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1.0 JOINT STRIKE FIGHTER (JSF) MANUFACTURING
DEMONSTRATION OVERVIEW

1.1 JMD Program Executive Summary

The cornerstone of the JSF program is affordability. As a result, the JSF program has
been a leader in affordability activities such as the Lean Aerospace Initiative (LAl).
Modeled after the Massachusetts Institute of Technology's International Motor Vehicle
Program, the LAl is a joint U.S. Air Force — Industry effort to identify key principles and
practices that will enable the implementation of lean manufacturing within the U.S.
aerospace industrial base.

The LAI surveyed its members and found that those companies who had database
commonality among design and cost information achieved significantly better schedule
and cost performance than those who did not. As part of its research, the LAI identified
the following attributes of an integrated cost/design database:

* Makes cost readily accessible to the design team

+ Tailors application to fit Integrated Product Team (IPT) scope

» Maximizes use of actual cost data; minimizes dependence on cost models
» Cost data kept very current

» Cost impact of design changes can be determined at the micro
(parts/assemblies) level

* Rolls up product costs frequently.

Acting through the Air Force Research Laboratory at Wright Patterson AFB, the JSF
Program Office selected a team led by Raytheon Systems Company to refine and
demonstrate a powerful set of lean practices and tools as part of the JSF Manufacturing
Demonstration (JMD) program. The Raytheon JMD team of Raytheon Systems
Company (RSC, formerly Hughes Aircraft Company), Boeing Aerospace (BA, formerly
McDonnell Douglas Aerospace), Management Support Technology Corporation (MST),
Computer Sciences Corporation (CSC), and Arizona State University (ASU) developed,
refined and demonstrated lean practices and processes and an integrated design/cost
database and tools that can aid the JSF community in significantly reducing JSF life
cycle cost. The JMD program successfully completed three major thrusts:

1. Develop an Integrated Product and Process Development (IPPD) process that
emphasizes cost as an independent variable; define and document key lean
practices/processes developed for the IPPD environment; integrate design and
cost data and tools, making cost and design data available to the IPT in near-real
time.

2. Demonstrate the effectiveness of the JMD methodology and integrated toolset on
the ARPA-funded High Density Microwave Packaging (HDMP) program.

3. Disseminate knowledge of the JMD methodology to the JSF community prior to

1



the E&MD phase of the JSF program, maximizing the JMD cost-reducing ability
during the JSF engineering development phase.

To support best-value design choices, the JMD team developed a three-part IPPD
methodology consisting of:

 An all-tier Product Development Process, with inclusive design to cost and
design for six sigma, keenly focused on meeting all customer requirements

* A number of corporate strategies including design to cost, activity based
management allowing for improved cost visibility, team motivation, and
strategic sourcing and supplier development

» Software support tools that integrate design and cost information, enabling
near-real time cost estimation and simplified knowledge base development.

The JMD team successfully demonstrated the effectiveness of the JMD
methodology at a mini-demonstration held in January 1997 and during the initial phase
of the full demonstration held throughout 1997. Advanced tile module active array
technology was chosen as the demonstration vehicle for the JMD program because it
promises to form the foundation for a new generation of low cost, lightweight active
arrays. The tile module is being developed for the Advanced Research Projects Agency
(ARPA) on the High Density Microwave Packaging (HDMP) program.

Using the integrated design/cost environment, the team was able to perform design
trades to reduce the cost of the HDMP tile array. At the program’s mini-demonstration
held in January 1997, the cost of the tile transmit/receive electronic modules was
reduced by 19.3% using the JMD methodology. The methodology also showed a 60%
reduction in tradeoff cycle time and a 27% reduction in tradeoff labor hours. During the
initial phase of the full demonstration held during 1997, the methodology was applied to
a more complex subarray. A cost reduction of 10.5% was achieved on the subarray,
and the tradeoff cycle time and labor hour reductions experienced during the mini-
demonstration were also realized during the full demonstration. These achievements
are summarized in Table 1-1. In December 1997, the JMD program was descoped at
the convenience of the customer. The JMD team was well on the way to reaching its
20% cost reduction goal on the HDMP tile subarray for the full demonstration at the time
of the descope. The monthly cost savings achieved on the tile subarray are summarized
in Figure 1-1.

Table 1-1. JMD Design/Cost Tradeoff Achievements Summary

Mini Demonstration (Jan. 1997) Tile Full Demonstration (Jan. — Dec. 1997)
Transmit/Receive Module Tile Transmit/Receive Subarray
Recurring Cost Reduction 19.3% 10.5%
Tradeoff Cycle Time Reduction 60% ~60%
Tradeoff Labor Hours Reduction 27% ~27%
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Figure 1-1. Planned and Calculated Monthly Cost Savings for
a 192-Element Prototype Subarray. The cost savings analysis
effort was descoped after completing only the first 5 months of the
14-month study.

As JMD proceeded, the team documented lean practices and processes and
integrated tools that the program was developing. With the release of this final report,
the JMD program has met all of the deliverable requirements specified by the contract.
The JMD documents and videos are available to the JSF community through the JSF
Program Office. The JMD documents and their delivery dates appear in Table 1-2.

Table 1-2. JMD Deliverable Documents (Distribution A Versions: Distribution Unlimited)

Document Release Date

Lean Practices and Processes for the IPPD Environment 13 January 1999
Information Technology Architecture: Integrated Design and Cost Data 18 January 1999
and Tools (Version 1.0)

Cost Estimation Tool Comparison Summary 15 January 1999
Design to Cost Guide 11 January 1999
Design to Cost Training Materials 11 January 1999
Process Characterization Toolset - User's Manual 11 January 1999
STEP Translator Evaluation Report 15 January 1999
JMD Mini-Demonstration Video 15 January 1997
JMD Final Report 13 January 1999

1.2 Scope of This Final Report

The JMD program began in August 1995 and was scheduled for completion in
December 1998. However, because of federal budget constraints that were
subsequently imposed, the program was descoped and funds were deobligated at the
convenience of the customer in early December 1997. At that time, the customer
specified that a final report documenting progress since the end of Phase | in January
1997 be generated.

As specified by the JMD customer, this report documents the work completed on the




JMD program up until its descope. This final report in conjunction with the CDRL
deliverables listed in Table 1-2 constitute the full documentation of the JMD objectives.
The specific subjects covered within this final report are:

1. JMD Methodology Overview and Enterprise Implementation
2. Results of the HDMP full demonstration

3. Implementation and evaluation of Activity-Based Management (ABM) at HE
Microwave

4. Implementation and evaluation of Process Characterization Toolset (PCT) at HE
Microwave

5. CORBA-compliant information technology (IT) architecture



2.0 OVERVIEW OF THE JMD METHODOLOGY

The Joint Strike Fighter program is developing a family of tactical aircraft to meet the
next generation strike mission needs of the U.S. Navy, Marines, Air Force, and Allied
Forces. The cornerstone of this program is affordability. With this in mind, the JSF
program has been a leader in affordability activities such as the LAI.

Modeled after the Massachusetts Institute of Technology's International Motor
Vehicle Program, the LAl is a joint U.S. Air Force—Industry effort to identify key
principles and practices that will enable the implementation of lean manufacturing within
the U.S. aerospace industrial base.

LAl surveyed its members and found that those companies who had database
commonality among design and cost information achieved significantly better schedule
and cost performance than those who did not. As part of its research, LAl identified the
following attributes of an integrated cost/design database:

* Makes cost readily accessible to the design team

« Tailors application to fit IPT scope

» Maximizes use of actual cost data; minimizes dependence on cost models

+ Cost data kept very current

» Cost impact of design changes can be determined at the micro
(parts/assemblies) level

* Rolls up product costs frequently

To achieve these LAl goals, the JMD team developed a three-part methodology
consisting of:

 An all-tier product development process keenly focused on meeting all

customer requirements

» A number of corporate strategies, including Design to Cost and Activity-Based
Management, allowing for improved cost visibility, team motivation, strategic
sourcing, and supplier development

» Software support tools that integrate design and cost information, enabling
near-real-time cost estimation and simplified knowledge base development
The JMD program developed a methodology that extended Integrated Product and
Process Development (IPPD) to create more affordable, best-value products as the
normal way of doing business. The overall JMD methodology is summarized in Figure
2-1.
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Figure 2-1. JMD Methodology Overview

2.1

Enterprise Implementation of the JMD Methodology

As a result of lessons learned on the work of integrating cost with product development,
a 10-step methodology of JMD enterprise-wide implementation was developed.

A

10 Steps to an Affordable Design
Adopt a cost focus.

best possible price.

Institute a disciplined product development process (PDP).

Establish a process owner and management metrics (e.g. cost, Six Sigma, etc.)
Train IPTs in Design to Cost.
Establish procurement processes that ensure purchase of quality parts at the

6. Implement processes and tools that allow manufacturing process costs to be fully



understood and use them to improve.

7. Perform a parametric assessment of early design space, identifying requirements
and key characteristics.

8. Integrate part cost, process cost, and design data and make these detailed
knowledge bases available to the IPT in near-real time.

9. lterate detailed design and monitor progress towards goal.

10.Review, validate, and update integrated cost and design databases regularly.

The implementation process is summarized in Figure 2-2. Each of the 10 steps will
be discussed below.

1. Adopt a cost focus

To excel in today’s marketplace, companies can be competitive only by offering
products that provide a robust balance among cost, performance, and supportability.
The new defense procurement environment continues to demand premier-quality
products with excellent technical performance. However, strong market forces favor the
low-cost producers. To remain competitive, companies must create a culture that drives

Develop the Process

Execute the Process

Time — Timeline is dependent on company’s condition at initial start

5. Establish procurement processes that ensure purchase of

quality parts at the best possible price

8. Integrate part cost, process cost, and design data and make these detailed
knowledge bases available to the IPT in near-real time
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Figure 2-2. Enterprise JMD Methodology Implementation Roadmap

every development and manufacturing decision to eliminate non-value-added activity.
This culture must be instilled with the commitment to meet or beat clearly defined



product cost targets.

Changing a corporate culture requires firm financial commitment. Lean corporate
strategies and tools must be identified, evaluated, and implemented to fully realize cost
reductions. The JMD program has done just that: identified, evaluated, and
implemented the strategies that lead to lower-cost products. Any company within the
JSF community that wishes to embrace the JMD methodology can evaluate and
implement the lean practices and tools that are documented in these reports.

2. Institute a disciplined product development process

To fully embrace a cost focus, companies must implement a disciplined product
development process (PDP) that treats cost as an independent variable, equal to
performance and supportability requirements. The PDP incorporates IPPD philosophies.
IPPD is a straightforward concept focused on bringing the right people with the right
training together with proven tools and processes to satisfy customer needs. The IPPD
philosophy is rooted in improved knowledge sharing among design team members and
is facilitated by well-defined processes and ready access to the required design and
cost data and tools. Because IPPD developments provide much closer ties among
customers, contractors, and suppliers, there is a shared vision of economic, technical,
and schedule priorities. The use of well-defined processes and tools provides order and
predictability. Figure 2-3 highlights key benefits to customers, the enterprise, and
employees. The creation and deployment of key lean practices and processes will
leverage and magnify IPPD effectiveness, while improved access to cost data through
an integrated toolset will reduce design trade effort and cycle time, allowing more and
better cost assessments to be completed before irreversible design decisions are made.

IPPD Provides Benefits to All

To customers:

® Provides higher quality products,
on time and within budget

(86-12-0) £611080-0%0 |
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Figure 2-3. IPPD Benefits Accrue to All

The IPPD Methodology developed by the JMD program and Raytheon is documented in
detail in the document “Lean Practices and Processes for the IPPD Environment” listed



in Table 1-2.

The JMD program has shown that the IPPD methodology approach to product
development synchronizes the efforts of IPTs throughout the IPPD environment.
Common processes and common tools are reciprocally supportive and greatly improve
both technical and business communications, while adding substantially to work force
transportability. The iterative and interactive application of PDP-derived product
processes further improves communication and buy-in at all levels in the IPT hierarchy.
Each of these benefits should help to improve the ability to control the design process,
reducing oversights and mistakes grounded in task uncertainty and poor information
exchange.

Raytheon’s second generation IPPD system is in early deployment and is already
showing measurable improvements in product cost control, as well as marked progress
in effective IPT treatment of cost, manufacturability, yield and design cycle time. We
believe that the JMD demonstrations showed that the IPPD approach to product design
has the potential to reduce JSF cost significantly, while providing a product that
balances cost, risk, and performance. Because most of the JSF community is pursuing
process improvement, it is likely that other community members have defined
development processes that offer a similar but unique set of benefits from our IPPD.
JMD would be interested in sharing ideas with these community members so that we
can improve the IPPD approach at an accelerated rate. Similarly, it is our hope that
other members of the JSF community will consider piloting elements of the PDP design
approach within their own operations so that they, too, can evaluate its efficacy in
providing Best Customer Value.

An established commonality of design approach and tools among eventual JSF
contractors will minimize cross-organizational boundaries and will ensure that the
integrated aspect of IPPD will span the entire weapon system, reducing the non-value-
added effort often expended at organizational boundaries.

3. Establish PDP process owners and management metrics

Having a lean product development process will result in improved product quality and
lower cost only if managed correctly. Companies must ensure that the disciplines
invoked by the lean JMD PDP are followed in every product line across the corporation.
To do this, process owners must be identified who are responsible for implementing and
improving the PDP as it applies to their particular product.

Process owners manage the changes to the IPPD methodology. To do this, they
must identify and evaluate potential improvements, gain enterprise-wide consensus for
the recommended changes, and revise the IPPD process descriptions to implement the
changes.



The first responsibility of the process owners is to identify and evaluate potential
improvements to the IPPD methodology. The main process improvement ideas will
come from lessons learned by IPTs as they execute, measure and improve their tailored
processes. Each program is, in essence, a laboratory that is testing process
improvements. Process owners roll up metrics collected by individual programs,
participate in process reviews, and conduct process assessments. They analyze the
data to determine which of the tailored processes are candidates to replace the
previously identified best practices captured in the IPPD processes.

Process owners also evaluate other sources of potential process improvements,
such as benchtrending, and determine which ideas should be implemented. They also
bear responsibility for getting enterprise-wide consensus on recommended changes
and for updating the IPPD documentation to reflect approved changes.

Line management must ensure that the elements of IPPD are followed in every
phase of a product’s development. To accomplish this, Raytheon has implemented
checkpoints, or gates, that every product must pass through as it progresses in its
development cycle. At key points, programs are required to prove that every
requirement within the PDP has been met before the product is allowed to continue in
its development cycle. This ensures a disciplined approach across the corporation and
contributes to a permanent change in corporate culture.

4. Train IPTs in Design to Cost (DTC) and Cost as an Independent Variable (CAIV)

CAlV is a new policy of the DoD, developed in 1995 under the leadership of Dr. Paul
Kaminski, the Under Secretary of Defense for Acquisition and Technology. It is a more
far-reaching policy than Design to Cost and in many ways supersedes the DTC
approach. CAIV covers many topics of acquisition not addressed by DTC such as
contract and subcontract management, connections with Integrated Master Planning
and Scheduling (IMP/IMS) and integration with Risk Management. CAIV also puts
greater emphasis on total ownership cost, which includes every aspect of the life cycle.

However, it should be noted that CAIV and DTC are mutually supportive. At
Raytheon this means that DTC is the key analytical engine for designers and other
members of the IPT to support this part of the CAIV methodology. Translated into the
Raytheon standard engineering process, CAIV requires that the DTC “7 Step Method”
as shown in Figure 2-4 and Figure 2-9 must analyze a broader range of design trade
scenarios because CAIV requires that engineering (systems analysis) be used early on
to evaluate the warfighter’s needs from the mission perspective.

DTC is both a business culture and a way of conducting a development business.
The JMD DTC approach goes far beyond the traditional DTC application because it is
fully integrated into a comprehensive product development process that treats cost as
an independent and critical requirement. Using this approach, each design choice is
evaluated simultaneously for both cost and benefit. This process should begin prior to
the Concept Exploration proposal and must remain vigorous throughout product
development. DTC is focused on minimizing cost, identifying and eliminating non-value-
added activity, reducing cost risk, and achieving well-defined product cost
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Figure 2-4. CAIV Encompasses DTC and Integrates Other Acquisition
Methodologies

objectives by optimizing the entire product to provide Best Customer
Value.

DTC is iterative, creating a multi-tier IPT that integrates Design Engineering,
Process Engineering, Manufacturing, Materiel, Quality, and Business across all IPT
levels to develop manufacturable products that meet well-defined cost targets while
balancing cost, performance, supportability and risk.

Key DTC requirements/goals are as follows:

» Cost must be an Independent Design Requirement with importance equal to or
greater than performance (i.e., the process must address CAIV as its primary
focus).

» DTC focus must begin as early as possible in a program (pre-RFQ) for early
cost driver identification.

» Lean practices and processes must be effectively leveraged.

» Cost estimation can be approximate in early program phases; progressively
better during Engineering and Manufacturing Development (E&MD).

» Cost estimation cycle time must be near real-time by the detailed design phase.
» Design, manufacturing and cost data must be readily accessible.
« DTC tools must be user-friendly and accessible from the IPT’s desktop.

11



« Manufacturing process costs must be understood.
» DTC training, deployment, and data collection must be given high priority.

The detailed JMD DTC process is described in the “Design to Cost Guide” and the
“Design to Cost Training Materials” documents listed in Table 1-2.

5. Establish procurement processes that ensure purchase of quality parts at the
best possible price

Historically at Raytheon, 50-80% of product cost has been in purchased material. In
order to gain control over and be able to reduce product cost, we must create
dependable, cost-effective suppliers. Strategic Sourcing, which started at General
Motors (GM) and was instituted at GM Hughes Electronics (GMHE) 2 years ago, has
rapidly grown into a dynamic toolset that is being deployed throughout our organization.
Strategic Sourcing and supplier development allow the designer to select the best parts
from the most cooperative, proven suppliers. In our world of rapid change, the process
of integrating commercial practices from GM’s Worldwide Purchasing process into the
Raytheon framework has been challenging and productive. Raytheon has experienced
significant reductions in parts cost as a result of Strategic Sourcing. The cornerstones of
Strategic Sourcing as realized in Raytheon’s Worldwide Purchasing approach are
shown in Figure 2-5.

The details of Raytheon’s Worldwide Purchasing concept are outlined in the
document “Lean Practices and Processes for the IPPD Environment” listed in Table 1-2.

Strategic Sourcing can be adapted and applied by members of the JSF community.
Because many JSF participants are very large enterprises, they are particularly well
positioned to leverage those strategic sourcing techniques that depend on being part of
a large material-consumption base. JSF community members of any size can exploit

Commodity Alignment
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Figure 2-5. The Cornerstones of Raytheon’s Worldwide Purchasing
the techniques of Advanced Purchasing, focused Creativity Teams and the participatory
approach to Supplier Development.
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6. Implement processes and tools that allow manufacturing process costs to be
fully understood and use them to improve

Understanding the manufacturing process—its flow, material, manpower, equipment
requirements, time allotments, and possible unscheduled tasks (such as rework)—is the
focus of process characterization. Process characterization provides the information
needed for cost/yield estimation and for identification of process improvements that will
lower costs and defects while increasing capability and efficiency.

To meet JSF recurring cost goals, manufacturing process costs need to be better
understood, accurately modeled, and made available to the design IPT so that key
manufacturing decisions can be made early in the development cycle. The JMD
program developed and evaluated two approaches to better understanding
manufacturing process costs.

* Process Characterization Toolset

To find and eliminate non-value-added activity, a major emphasis in the lean
enterprise environment must be the clear definition and characterizations of
critical processes. The importance of understanding manufacturing processes
is further magnified by the JSF focus on modeling, simulation and the use of
virtual reality technology.

As part of this process perspective, it is important to focus on two important
facts. First, processes vary with time; second, changes in process will be
responsible for changes in products. To illustrate, consider a machine, such as
a production drill press. When it is new, it can hold specified tolerances. As it
begins to wear, bearings and races may deteriorate and it may no longer hold
these tighter tolerances, and the process is changing. As these changes occur,
the holes drilled in products may become out-of-round or off-center, causing
the product to change in an uncontrolled manner.

Process characterization, then, is important not only for process control as
applied in SPC and exploited by Six Sigma, but also as an aid to understanding
the relationship between product performance and process variability. This
product/process relationship allows us to focus on key control characteristics
(KCCs) in the process that will have the most impact on key product
characteristics (KPCs) in the manufactured part.

Process characterization is also necessary if we are to make objective
evaluations of new, alternative or evolving processes and to accurately model
evolving process sequences in virtual manufacturing simulation efforts. For
example, is there enough information to determine the most cost-effective way
to build a part? Do we have enough information to decide if we can apply a
new, “greener” process, and what is the cost impact? Do we have enough
information to know when we need to replace rather than repair existing
equipment? |s there enough information to determine if new production
technologies are sufficiently mature to deploy? The above questions

13



can be addressed if detailed process characteristics are captured.
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The JMD program has defined a methodology for process characterization that
is summarized in the “Process Characterization Toolset (PCT) User’s Manual’
listed in Table 1-1. The relationship between PCT methodology, PDP, Six
Sigma and DTC is depicted in Figure 2-6. Because process characterization
can be difficult, we have separated the stages of the methodology into discrete
steps that occur within the stages; these steps are specifically supported by the
COTS software tools that make up the Process Characterization Toolset. The
toolset also provides a framework for making process characterization more
consistent across different processes and organizations.

The JMD program evaluated the effect of PCT on the HDMP T/R module build
at our HE Microwave facility in Tucson. The results are documented in Section
5 of this report.

* Activity-Based Management

The cost collection and distribution systems in the defense contracting
environment are traditionally structured to collect and distribute cost around the
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elements of cost, functional organizations, and contracts. However, the
traditional structure does not adequately handle the association of process cost
to product cost. The traditional systems do collect assembly labor and product
direct material at the product cost level, but the true cost of producing a product
is masked by allocated support and applied overhead costs. Basically, the
traditional systems approach to understanding resource consumption is:

» Organizations consume resources
» Programs use organizations’ resources

To understand the true cost of products, a paradigm shift is required in the
methods we use to collect and distribute cost. The cost structure of the future
should serve as a tool that enables management to reduce costs, eliminate
non-value-added activities, and determine the true costs of specific activities
that contribute to product cost. Activity-Based Management is a management
tool and Activity-Based Costing is an accounting method, both of which can
enable a business to determine the true cost of the activities that are used to
build their products.

Activity-Based Management (ABM) enables a business to better understand
how and where its resources are consumed. In ABM, all major activities within
an operation are identified and the costs of performing each activity are
collected. The cost of performing each activity is clearly visible to management;
however, the traditional cost distribution to cost objectives (i.e., the products or
programs that benefit from the activities) does not change.

Activity-Based Costing (ABC) also enables a business to better understand
how and where its resources are consumed. In ABC, all major activities within
an operation are identified and the costs of performing each activity are
collected. The resulting costs are then charged directly to the cost objective
that consumed the activity.

Simply stated, the new paradigm in understanding resource consumption is:
+ Activities consume resources

* Products consume activities

The ABM and ABC concepts are discussed in detail in the document, “Lean
Practices and Processes for the IPPD Environment,” listed in Table 1-1. As part of this
program, a pilot study was performed at Raytheon’s HE Microwave facility in Tucson,
Arizona. The results of that study are included in Section 4 of this report.

7. Perform a parametric assessment of early design space identifying
requirements and key characteristics

There is no single cost estimation technique that can serve DTC adequately for all
system levels nor for all program phases. Parametric models are most often used when
little detailed design information is available and approximate cost assessment is
satisfactory. Parametric models relate physical and functional cost drivers to
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product cost using cost estimating relationships derived from regression or other
analysis of historical product/cost data. Their unique benefits are rooted in the ability to
provide repeatable cost estimates before detailed design knowledge is available and to
provide tests of reasonableness throughout the development. Parametric models are
commonly used for concept tradeoff evaluations during high-leverage pre-proposal,
proposal and Concept Exploration phases when little detail is known (see Figure 2-7).
Previous product cost histories are used to develop cost relationships that are used to
predict the cost of meeting new requirements. Common uses for parametric cost
models include:

« Architectural cost tradeoff analysis

* Pre-proposal cost evaluations

» Rapid rough-order of magnitude (ROM) estimates
» Should-cost competitor/self proposal evaluation

DTC cost target allocations

Should-cost estimates for “buy” items (UPC)
UPC estimation prior to E&MD

Early RDT&E NRE cost estimation

Early O&S cost estimates for DTLCC

Pre-Concept Concept Exploration Program Definition and Risk Reduction Phase g
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Figure 2-7. Parametric Cost Models Are Used when Detail Information Is Unavailable

17



+ Cost estimation “sanity checks” throughout the development

The JMD program has identified a variety of parametric cost estimating tools that are
available as COTS products. Some of the most commonly applied of these are
described (including summaries of their respective inputs, outputs and key features) in
the “Design to Cost Guide,” listed in Table 1-1.

As a product’s concept definition nears completion and design details become
known, final Unit Production Cost (UPC) cost/performance trades and Operation and
Support (O&S) sparing projections are best supported by detailed Cost Build-up (CBU)
models. CBU models are based on the actual or quoted costs of a product’s constituent
parts and processes. They are used to achieve the cost visibility needed to make
specific design decisions, usually during the preliminary and detailed design phases of
product development. These models aggregate costs from lower levels to higher levels
of assembly. For UPC estimation, the same CBU tool can be populated with
parts/processes from a previous product to provide a “by analogy” model or by supplier
quotes and process cost/yield estimates to form a “detailed” model of the design at
hand. Similarly, during the low rate initial production (LRIP) and production phases, the
same tool can be populated with actual parts costs and measured process costs/yields
to create “as built” models for production cost monitoring and cost estimation
benchmarking/validation. The CBU tool can also be used to roll up subproduct
estimates to estimate the cost of higher level products. CBU model outputs can be used
to populate parametric models with the historical data that they require.

The JMD methodology describes the process to integrate parts cost, process cost,
and design data, populate a CBU model, and make this information available to the IPT
in near-real time.

8. Integrate part cost, process cost, and design data and make these detailed
knowledge bases available to the IPT in near-real time

The desired capability in an integrated system is best characterized simply as “providing
the right people with the right information at the right time.” The migration from a
traditional serial workflow process to an IPPD environment, where all functional areas
work together in parallel, magnified the deficiencies in the pre-JMD development toolset
and data management environments. The traditional development tool sets at Raytheon
consisted largely of legacy applications developed in-house that used a variety of
partially integrated COTS applications. The once-adequate legacy systems were
developed around the serial development processes of the past. They were designed to
serve the needs of specific functional areas first and the needs of related functions only
as an afterthought. COTS packages, while more robust, were generally intended to
support a limited set of users. Engineering CAD tools and other primarily UNIX-based
products have also been focused on narrowly defined user groups. The resulting
environment was poorly positioned to serve the data and information processing needs
of today’s interdisciplinary IPTs.

At Raytheon, the pre-JMD IPPD information environment was characterized by:
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» Multiple sources of data in functionally separate application systems

» Multiple application systems resident on multiple computing platforms using
multiple architectures, operating systems and databases

» Multiple formats for whatever common data that existed across functional areas

Such an environment of diverse data sources and sometimes redundant and
overlapping tools led to unneeded complexity, marginal cost/benefit visibility and
extended tradeoff cycle times. In addition, the propagation of changes in data in
associated functional areas other than the originating functional area was rarely timely.
Lags in information availability were often reflected in extended development time and
increased product recurring cost. For example, many cost estimating tools used
purchased part and material costs as components in their cost models, but the linkage
between the source of the data (agreements in the materiel organization) and the user
of the data (the cost model being used by the design estimator) rarely existed. As a
result, an upward change in the market price of a raw material or commodity was not
reflected in the cost estimating model in time to adjust the product design. The cost
engineers discovered the change in market price only after analyzing a budget overrun
for producing the part.

Inherent in the definition of an integrated design/cost environment was the idea that
the timely exchange of information across traditional organizational boundaries had a
significantly beneficial impact on cost and cycle time reduction. This concept, depicted
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Figure 2-8. The JMD Integrated Cost/Design Environment Provides Data to the IPT in Near-Real
Time

in Figure 2-8, was fundamental to the implementation of an integrated DTC
environment.
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Design and cost data needed to flow both across functional areas and within the IPT
product hierarchy. The application systems and tool sets supporting the IPT in DTC had
to respond to the IPT demand to provide the appropriate cross-functional data at the
appropriate time to all IPT members. The functional applications and their respective
data could no longer exist in isolation. The IPT environment demanded an application
environment that was seamless, integrated and near-real-time in its responsiveness to
enable the needed information exchange.

To convert these Lean Aerospace Initiative principles to a working implementation, a
suite of models was assembled that leveraged the existing legacy systems at Raytheon
and supplemented them with state-of-the-art software costing applications. A summary
of the table defining these tools/applications is provided as Table 2-1. This table and
the models are discussed in detail in Sections 3 and 6.

This seamless integration of design and cost information was the principal objective
of the JMD program. The JMD program describes in detail the information technology
architecture developed to achieve these goals in the document “IT Architecture:
Integrated Design and Cost Data and Tools” listed in Table 1-1. The effort to upgrade
this architecture to CORBA compliance is documented in Section 6 of this report.

9. Iterate detailed design and monitor progress towards goal
When taken in its most basic form, DTC is very simple and supports the CAIV

Table 2-1. Application/Tool Summary

Application/Tool

Supplier

Function

Product Information Manager
(PIM)

Explore (CIS)

Pro/Engineer

Mentor Graphics

Cost Advantage

HACOST

Process Characterization Tool
TCP/IP Network Protocol
PDM Graphical User Interface

(PGUI)

JMD Graphical User Interface
(Jaui

Sherpa Corp.

Aspect Corp.

Parametric Technology Corp.

Mentor Graphics Corp.

Cognition Corp.

Raytheon/Galorath Associates

Raytheon

SUN

Black & White Software

IONA

Legacy Raytheon system for storage and
configuration control on all engineering/product
information

Legacy Raytheon system for database for
component, material and process libraries

Raytheon mechanical engineering CAD
standard for 3-D Solid Model Design tool

Raytheon electrical engineering CAD standard
for Schematic, Board & Hybrid Design tool

Creates process models and Kbases, extracts
features from Pro/E file, annotates/maps
features from Pro/E solid models

Standard design to cost tool for IPTs

Set of commercial software to gather,
characterize and reduce process data for use by
design IPTs

Standard communications protocol of
Raytheon’s infrastructure

Legacy Raytheon system for user interface

New user interface optimized for Lean
Aerospace Initiative activities

methodology, concentrating only on meeting well-defined cost objectives. In the real

world, many

requirements

must
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thorough analysis and tradeoff among viable alternatives in order to achieve a balanced
affordable design. Product development usually requires the concurrent development of
key subproducts that are crucial to product affordability and/or functionality. Indeed,
most complex products are made up of assemblies that are, in turn, composed of
multiple subassemblies themselves made up of still smaller subassemblies, and so on.

The iterative design process begins with a product requirement that includes cost as
a major priority. The ensuing requirements flowdown and associated design process are
merged into a continuous multi-tiered interactive process. This process seeks to
optimize the entire product by allocating all requirements at all levels in the product
hierarchy to produce Best Customer Value. The generic seven steps shown in Figure 2-
9 summarize a single tier of the iterative decomposition of a product into its
subproducts. This representation of the iterative development process is referred to as
the “Seven Steps to an Affordable Design.” A product-tailored derivative of these steps
is applied to every subproduct at each level in the hierarchy, beginning in the Pre-
Concept phase and continuing throughout Detailed Design. For multi-tier
decompositions, the seven steps are applied at each subproduct level until no further
decomposition is needed, so that initial design approaches and assessments can be
used to steer each level of requirements flowdown toward a product-global optimum.
Cost target allocations are a crucial part of this flowdown sequence.

Multi-tier interaction continues until we either establish that the requirements can be
met with acceptable risk or we agree upon a best-value solution with the customer and
define revised requirements that can be met; this agreement can be a critical part of
design balancing. Iterative flowdown is performed or reviewed/revised in each
development phase before we issue the formal requirements appropriate to the given
phase.

The design is complete when the customer/contractor team has accomplished the
following:

1. Performed detailed cost, performance, supportability, and risk assessments that
indicate that all final requirements will be met with levels of cost, schedule and
technical risk acceptable to both the customer and the Company

2. Allocated all requirements to NDI items or specific custom components
3. Completed the detailed design of all custom components

4. Successfully modeled/prototyped custom components and assemblies that can
drive cost, performance or schedule

5. Completed a thorough manufacturing plan defining the approach to the
fabrication or procurement of all components and the assembly, integration and
test of the product and each significant subproduct

6. Complied with all customer and Company requirements for ILS, support, review,
documentation, verification, scheduling, warranty, etc.
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Figure 2-9. Seven Steps to an Affordable Design. This iterative process employs seven steps that are
repeated at all levels in the product hierarchy.
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10. Review, validate, and update integrated cost and design databases regularly
Associated with implementation of the JMD methodology, the enterprise must
understand that the system requires some “maintenance” to ensure that the IPT is
consistently making accurate cost projections. Databases that feed the system, such as
purchased parts cost and technical parts data, must be updated with the most current
pricing and technical information. Since the JMD process approaches real time, the
maintenance of the support databases must also. The knowledge bases used in
conjunction with Cost Advantage and the Process Characterization Toolset must be
maintained with the latest available technologies and process costs so that design
options can be maximized. Maintenance would also include the validation of cost
projections versus actual costs experienced. The benefit of reduced product cost and
cycle time afforded by the JMD system, increasing the overall competitiveness of the
enterprise, outweighs the system maintenance cost.
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3.0 RESULTS OF THE HDMP TILE SUBARRAY DEMONSTRATION

3.1 Introduction

This section of the JMD final report covers the full demonstration effort of Phase II.
Phase | of the JMD program covered the development of cost estimation improvements,
Activity-Based Management (ABM), and manufacturing process characterization
improvements. That phase culminated with a mini-demonstration of the cost estimation
models and supporting data. Phase Il is a full demonstration utilizing the practices,
processes, and data integration techniques developed in Phase | to cost out a prototype
active array antenna. The goal was to show how cost estimation software could be used
to document and quantify design/cost tradeoff reductions in cycle time and estimated
production costs.

The active array antenna is being developed under the High Density Microwave
Packaging (HDMP) Program. Raytheon is leading the development of active array radar
that will revolutionize the state of the art in aircraft, space, missile and surface radar.
Raytheon’s HDMP program made a major step toward active array affordability by
analyzing and improving the array assembly process that proceeds from the monolithic
microwave integrated circuit (MMIC) chip level to the full array.

The purpose of the HDMP program was to develop a high density packaging
approach suitable for modules containing a variety of device technologies operating at
microwave frequencies. The approach selected fits diverse system needs with a focus
on active array radar systems.

The Raytheon approach includes a truly innovative tile array packaging concept that
we believe is the basis for the next generation active array. Our major effort focused on
integrating and simplifying the module design and manufacturing process, facilitating
data transfer and feedback among the various process steps and reducing overall cycle
time and manufacturing costs.

The baseline design for the Raytheon HDMP Tile Module packages four T/R
channels on three vertically stacked ceramic tile substrates. The seam-sealed package
contains vertical interconnects captured in aluminum ring frames, which provide
substrate-to-substrate interconnects. The tile packaging concept is referred to as “three-
dimensional” because the substrates are stacked vertically on top of one another.

The tile packaging concept is a lower weight and lower cost alternative to the current
“brick” architecture. The brick concept is referred to as a “two-dimensional” approach,
since vertical stacking of substrates is not employed.

The JMD program began in August 1995 and was scheduled for completion in
December 1998. However, because of federal budget constraints that were
subsequently imposed, the program was descoped and funds were deobligated at the
convenience of the customer in December 1997. Thus, the full demonstration results
were never fully realized. Up to contract close, monthly subarray design/cost trades
were performed to demonstrate the JMD Methodology and design/cost tradeoff
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metric objectives were being realized and expected to meet program goals (See Figure
1-1).

This section provides an overview of Cognition Corporation’s Cost Advantage™
(CA) software, used to map design features into manufacturing process steps and
provide the resulting cost estimates. Each of the eight process models developed using
the CA software and the Cognition-supplied Tool Design 6 (TD6) are described, along
with a listing of the design trades the process model supports. (TD6 is a Cognition CA
“off-the-shelf” process model used to cost analyze parts created using a single or
combination of machining methods). The use of CA models to establish HDMP design
cost trades is discussed, including what worked, what didn’t work, and proposed
changes in methodology.

Section 3.2 describes the array structure that was cost analyzed and the process
utilization matrix. Section 3.3 provides an overview of the Cost Advantage process
development software and describes the several process models that were developed.
Section 3.4 covers the application of the JMD methodology to the design cost trades,
monthly cost savings resulting from design/cost trades, and a discussion of the JMD
methodology outcome. Section 3.5 contains the lessons learned and suggests areas of
improvement. Section 3.6 is conclusions and recommendations.

3.2 Process Development

To estimate the cost of a prototype active array antenna, cost estimation methods and
techniques were required that would include all aspects of the design, beginning with
components and subassemblies and ending with the final assembly. Ideally, it should be
possible to utilize a cost estimating system that would readily permit the determination
of initial costs and the effect of modifications at the component or subassembly level.
The decision had been made to use Cost Advantage as the basic cost estimation tool
and it appeared that the Cost Advantage software could meet this criteria. However, it
was necessary to make actual cost estimates and determine the effects of modifications
to original inputs before the extent of program flexibility could be ascertained.

To accomplish this, a cost analysis of the active array developmental antenna
design depicted in Figure 3-1 was completed. This design involved the fabrication and
assembly of tile configuration Transmit/Receive (T/R) bottom surface of the cold plate.
The T/R modules consisted of multilayer substrate assemblies separated by aluminum
ring frames that were sealed in kovar housings; the cold plate, circulator assemblies,
radiator assemblies, and shear plate were made from aluminum; the RF feeds and DC
PWBs were made from copper-clad duroid and copper-clad polyimide respectively. This
assembly provided an antenna test unit that could be used to obtain functioning
parameter data. (The nomenclature “tile configuration” emphasized that the T/R
modules were reminiscent of small pieces of tile that could be systematically arranged
to form the array structure.) The design incorporated an array of 16 modules, with each
module consisting of four radiating elements.
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Assembly Wiring
Board

Figure 3-1. Generic Cross-Sectional View of the Prototype Tile Array Assembly Components.
The costs of fabricating this antenna were determined by developing models for each component
based on Cognition’s Cost Advantage software. (Generic drawing is not to scale.)

The assembly sequence, the process models, and where these process models
were used are illustrated in Figure 3-2. To cost out the entire assembly, starting with the
construction of the module assembly, nine different process models were needed. Of
these only one, Tool Design 6 (TD6), was available from Cognition; the remaining eight
were developed by Raytheon to handle unique component and assembly requirements.
TD6 proved to be very useful when determining machining costs, such as those
associated with the fabrication of the cold plate, radiator sections, and shear plate.

To fabricate and assemble the T/R modules, three process modules were written:
one to cover fabrication of the multilayer substrates, another dealing with assembly
concerns such as mounting devices on the substrates, and the third detailing assembly
and test of these substrate subassemblies in the kovar housings to complete the final
T/R units.

Two models, PWB fabrication and PWB assembly, were prepared that could be
used to describe the fabrication and assembly of the RF feeds, radiator circuits and DC
control boards.

One model, RF fabrication, was used to cover the details of mounting the radiator
circuits onto the radiator base and placing a cover over the subassembly to complete
the radiator strip assembly. This process model also covers RF feeds.
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Figure 3-2. Tile Array Cost Model Utilization Matrix. This illustrates the component fabrication and
antenna assembly sequence. Vendor costs were used in lieu of substrate fabrication process model cost

estimates.

Costs of the antenna assembly were determined by accounting for the integration
and test costs of the DC PWB assembly, Level 1 feed assembly, cold plate assembly,
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circulator assembly and radiator strip assemblies using the subarray assembly model.

The assembly flow of Figure 3-2 begins on the left side of the page and ends on the
right. The various process models and supplier parts are color-coded to identify where
and when they were used.

3.3 Cost Advantage Software

Cost Advantage (CA) is Cognition Corporation’s rules-based system for cost and
producibility analysis. It captures manufacturing process knowledge and leverages that
knowledge to provide design guidance and decision support information for cost
identification and reduction. The model allows design and manufacturing engineers to
prepare cost notes that can be used to analyze parts and assemblies and make optimal
tradeoffs between individual component costs and the cost associated with assembling
those parts. It helps engineers understand the cost impacts of their decisions.

The CA software system consists of four sequential components. These
components are used as the framework for the development of process models and
extend to an analysis of designs and the storage of these results.

1. The CA Modeler component is used to build or modify existing process models.
The models are developed by the model builder in conjunction with a
manufacturing specialist.

2. The process model stores the knowledge of the manufacturing specialists in the
form of time and cost estimates for assembly and fabrication operations.

3. Cost Advantage itself analyzes designs using the data input into the process
model and generates estimates from the component, fabrication, and assembly
information input into the process model. This is the component that the design
engineers use to perform cost estimates and design/cost trades.

4. The cost note stores the cost and part information and is used to generate cost
reports.

The CA Modeler component is used to develop process models. These are initiated
starting with the Modeler window (Figure 3-3), which is used to define the desired
Process, Material, and Feature aspects. For example, when detailing a hole drilling
operation in a part, the Process callout would include a component that is machined, the
alloy being drilled would be designated by Material, and the drilling operation noted by
Feature. The Context window (which is opened from the Modeler window) shown in
Figure 3-4 is used to open editor windows in which the costs, characteristics,
restrictions, rules, tables and help pages are separately defined. The model can contain
“hard” restrictions that limit the choices a designer may have or “soft” restrictions that
advise the user of cost penalties associated with certain design choices. Commonly
used information and data can be accessed by the model from external databases or
from tables stored in the model itself.
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Figure 3-3. CA Modeler Window is used to define the desired
process, material, and feature aspects within the process model.
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Figure 3-4. CA Modeler Context Window defines the
formulas, values, and storage of data in the model that is
used to provide cost estimates.

By repeating this approach, i.e., defining the particular Process, Material and
Feature aspects in the Modeler window (which defines the Context level) and then
detailing the process variables in the appropriate editor windows, the knowledge
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details of numerous common processes can be added to complete a model.

Once manufacturing and cost knowledge is captured in the process models, the
models can be used to determine costs associated with the use of various components
and assemblies. The user then executes a CA cost session that permits costs to be
estimated using the same common consistent methods and data. This can be used to
provide preliminary cost estimates early in the design cycle, identify key cost drivers
before they impact manufacturing, investigate alternative materials or production
methods, produce make-or-buy decisions, and leverage supplier negotiations with
comprehensive cost analysis reports.

The process models provide time and cost estimates for assembly and fabrication
operations such as handling, orientation, insertion, fastening, inspection,
interconnection, drilling, machining, plating, and so on. Time estimates are based on the
results of standard time and motion studies previously made to determine the labor
required to perform assembly and fabrication tasks. The model uses these time
estimates to calculate process, material, and tooling costs, which are then displayed in
summary windows (see Figure 3-5) and can be printed out in cost reports.

The cost and part information for a component or assembly that has been tabulated
using CA can be stored as notes for future reference and modification. These Cost
Notes can be accessed and used in subsequent assemblies, thereby eliminating the
need to recalculate previous component or assembly cost analyses.

During the course of the JMD contract, five releases of the CA software were used,
starting with release 1.6 and concluding with 1.9.2. Each release was an enhancement
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Figure 3-5. CA Cost Summary Window provides a breakdown of the process, material, and
tooling costs associated with the fabrication of a component or the assembly of a unit.

to a previous version. At this writing, revision 2.0 is pending release. The Cognition
annotator software used is release 1.1 and the Costlink-PE software is release 2.2.
These latter programs were used when transferring Pro/E design features to a CA
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model. Table 3-1 lists the JMD tools and their functions.

3.3.1 Process Models

It was described previously how process models, either off-the-shelf or user-defined,
can be used to develop costs of assembled and fabricated items. For this study, user-
defined process models were developed for multi-layer ceramic substrate fabrication,
substrate assembly, module assembly, PWB fabrication, PWB assembly, mechanical
assembly, RF assembly, and array assembly. Off-the-shelf process model TD6 was
utilized to estimate machining process costs.

A description of each of the process models used in the program follows. As an
example, a detailed overview of the approach used when preparing a process model is
provided by the multilayer substrate fabrication description in Section 3.3.1.1. The same
method was followed when preparing the eight user-defined process models. An
extensive step-by-step explanation of the model development format is provided in
reference [1].

3.3.1.1 Multi-layer Ceramic Substrate Fabrication. The design/cost trade options of
the multilayer ceramic substrate fabrication process model are made by utilizing the CA
process and material windows revealed when the model is opened (Figures 3-6 and 3-
7, respectively). These, along with the Summary window (Figure 3-5), are the only
windows the operator sees when analyzing a design.

Table 3-1. JMD Tool Selection

Application Tool Supplier Version Function
Cost Cost Modeler Cognition Corp. 1.6-1.9.2 Create process models and Kbases
Advantage
CA Process “ -—- Kbase for cost estimating
Models/Notes
Annotator “ 1.1 Annotates/maps features from Pro/E solid
models
Costlink “ 22 Extracts features from
Pro/E file
Pro/Engineer Detail, ADV, Parametric 17-18 3-D solid model design tool
and others Technology
Corp.
DSS Management 1.0 Extracts/annotates features from Pro/E
Support solid models
Technology
Mentor Design Mentor 8.5 22 Idea, Board & Hybrid Station design tools
Graphics Manager Graphics Corp.
Cost Costlink MG Cognition Corp. 1.1 Extracts features/data from Mentor
Advantage Graphics file
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Figure 3-6. Multilayer Ceramic Substrate Fabrication
Process Model Window. These data values are specified by the
user and are used to determine the processing costs listed in the
model summary window.
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Figure 3-7. Multilayer Ceramic Substrate
Fabrication Material Model Window. These data
values are specified by the user and are used to
determine the material costs listed in the model
summary window.

The CA process window is shown in Figure 3-6. Lot size can be itemized and
selections made from a list of options defining XY tolerance, thickness tolerance, if laser
drilling will be done, and whether the post fire metallization is thick or thin film. The
fabrication labor rate and assembly labor rate used in the cost calculation are displayed
for the operators reference.

The CA material window is shown in Figure 3-7. The operator enters the x- and y-
direction dimensions, the individual layer thicknesses, average number of vias per layer,
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the number of layers that are to be laminated, the lid cost, and number of pins.

The Summary table at the top of Figure 3-8 itemizes the process, material, and
tooling costs that occur when the cost analysis is run. In this instance, a process cost of
$168 has been incurred. The user can access additional detail cost information (which
is shown in the Explain windows of Figure 3-8) by using the CA Explain feature. This
feature provides an explanation of an object you choose, such as a command, a
symbol, or a calculated value. All standard windows in CA have the “?” button, the
rightmost of the menus and buttons. To use the Explain feature, choose the “?” button
(the cursor becomes a ?), click on any object in a window or menu and CA displays an
explain window for the chosen object. Figure 3-8 shows the explain window for the
calculated value of the process cost.

The windows shown in Figures 3-6 through 3-8 can be accessed by the user when
making a cost estimate. A brief explanation of how a cost model is developed by the
model builder and how editor windows are used to input detailed process information is
described below. This information can be input only during model development and can
be accessed or modified only by the model builder. The information contained within the
process model cannot be modified by anyone using a model to do a cost analysis.

The CA Modeler component used to develop this model followed the approach
mentioned previously (and shown in Figures 3-3, 3-4, and 3-5): the Modeler window
was used to define a particular context, the Context window was opened to expose the
list of Editor windows (Figure 3-4), and selected windows were accessed so that
detailed descriptions and formulas dealing with processing variables could be added.

An example of how the process model calculates costs using the parameter settings
mentioned in Figure 3-6 and 3-7 is shown in Figures 3-9 through 3-11. The ceramic
brazed substrate summary table showing the total process costs is shown at the top of
Figure 3-9, with the process cost editor window (of the process model) at the bottom of
the figure illustrating those processing factors—Ilayer fabrication time, lamination time,
saw cut time, grind time, laser drill time, and post fire metallization time—entering into
process cost calculations. The total time associated with these factors is then simply
multiplied by the fabrication labor rate to arrive at the process cost of $168.
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Figure 3-8. Link Between the Summary Table and the CA Explain Feature. Using this
feature, the assumptions that were used to determine process, material, or tooling costs can be
accessed by the user. The user selects the “?” button (the cursor becomes a ?) and places the “?”
over the area where more information is required. In the example above, this area is identified by
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Figure 3-9. Relationship Between Process Cost Listed in the Summary Table and How It is
Defined in Editor Window. The times for the various factors are added together and multiplied
by the labor rate to establish process cost.

The individual factors entering into the process cost calculations and the labor rate
are completely specified in other editor windows. The links in this relationship is
demonstrated in Figure 3-10. Within the specified context (MLC-Ceramic-Feature), each
of the factors mentioned earlier were defined. In the examples of Figure 3-10, there is a
window for SawCutTime that defines the equation for that parameter, and another
window for FabLaborRate in which the rate is specified. Grind time, which also entered
into the process cost calculation mentioned in Figure 3-9, is defined as shown in Figure

3-11; this would also be linked to process cost in the same fashion, as previously
described.
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Figure 3-10. Relationship Between Process Cost Editor Window and Editor Windows Defining
Those Factors Influencing Process Cost. This illustration shows the equation defining saw cut time in
one window and the fixed labor rate contained in the other.

Using the same approach used when determining the process costs shown in the
Summary table of Figure 3-9, the material costs were calculated using data that was
input to the Material window of Figure 3-7. As shown in the editor window of Figure 3-
12, material cost is determined by multiplying ceramic cost, x-dimension, y-dimension,
layer thickness, and number of layers. Each of these factors was defined in the
appropriate editor windows that were accessed by the material cost formula. These
editor windows defining x-dimension, y-dimension, layer thickness, and number of
layers used the designated values that were manually input into the Material window to
calculate the data subsequently fed to the material cost editor window.
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Figure 3-11. Editor Window Defining Grind Time. This factor was one of those taken into
consideration when calculating Process Cost, which is defined in Figure 3-8.

The tooling costs shown in the Summary window of Figure 3-9 were calculated in
the same fashion. The tooling cost editor window is shown in Figure 3-13. In this
instance each of the various cost items—Ilayer fabrication tooling, grind tooling,
lamination tooling and laser tooling—were defined in separate editor windows. Lot size
was as defined by the user in the Material window when the CA model was opened.

An example of tabulated data that is stored in a process model that could be
accessed using a call function is shown in Figure 3-14. In this case, assembly rates and
factors are listed, and these factors can be used in an equation described in another
editor window by calling up the table by name and then selecting the column and row
cell containing the particular value. Tables are particularly useful, since a large quantity
of data can be located in one spot and the equations using that information scattered
about various editor windows. This limits the number of additional editor windows that
otherwise need to be developed, and greatly simplifies the modification of data, since
only one table needs to be accessed to implement changes to many data points.
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Figure 3-12. Material Cost Editor Window. This is the material cost shown in the summary
table of Figure 3-8. The equation used the ceramic cost defined in a subsequent editor window
and layer parameters that were input to the Material window of Figure 3-7.

There are three other Editor windows that were not utilized when developing the
Substrate Fabrication model: Restrictions, Rules, and Help Pages. These would have
been implemented as the process model became more complex and it was necessary
to avoid situations that were not practical or detailed notes were needed to maintain
historical continuity. For example, the maximum number of laminated layers permitted
could be stated.

Restrictions define limitations. An example could be restrictions on the thickness of
substrate material that could be via punched. Rules cover tests that are made which
affect cost characteristics. In this case, the cost impact of producing tight tolerance vias
might be addressed. The Help Pages windows are used to provide information that
promotes the use of good design practices by the model users.
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Figure 3-13. Tooling Cost Editor Window. This tooling cost is shown in the summary table of
Figure 3-8. The cost factors in the equation were defined in other editor windows; the lot size was
defined in the Process window of Figure 3-6.

3.3.1.2 Substrate Assembly. The Substrate Assembly process model is used to price
out part and assembly costs when mounting various electrical components on a
substrate. The model features the assembly of passive parts, active devices (face-up or
as flip chip), and wire bond interconnections. The user selects the feature part and
inputs the component part number and quantity of wire bonds for face-up chips. The
process cost, part cost, and the associated tooling costs for each part are shown in the
summary window. If the quantity of a specific part is more than one, that quantity is
changed in the summary window and the corresponding costs are updated (Figure 3-
15).
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Context MLC — Material — Featare 0§
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11
93

Murmnber of colurmms 2 ﬂ1_
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Mame | RatesFactorsDats,

Mumber of rosws | &

"Ttem" | "Rate" |
" AgzemblyRate| 02
"TestRate” 02
"AssyEfﬁFactur| 1 |
"RFindex’ |1 |
"Ceramic" | 100 |

Explenation text | The assembly and test rate are in §/second. The assembly
effeciency factoris 1 (100% ), asisthe RF Index (Realization
factor ndex).

Explanation graphics

Associated Help Pages

Figure 3-14. A Table Within the Multilayer Ceramic Substrate Process Model contains
process model common data, which is accessed using the lookup function call in the model
formulas.

3.3.1.3 Module Assembly. The Module Assembly process model is used to price out
the assembly of various substrate assemblies, ring frame assemblies, and housings to
complete the module build. The user selects substrate assembly, ring frame, and
housing parts from the cost note library. The build lot size is input and the appropriate
assembly feature is selected for each of the library parts. The model returns the process
cost, part cost, and the associated tooling costs in the summary window for the
completed module, as well as library part costs and the cost to assemble the library
parts. If more than one part is required, the quantity change is made in the summary
window and the corresponding costs are automatically updated (Figure 3-16).
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Cost Model

Process

SubstrateAssy

Substrate

Assembly Costs 1 18.10 9.50 27.60
5 | Assembly of SubAssy 3 1 19 19
5 | Assembly of RF Cap 32 5.99 10.40 16.39
=9 | Assembly of MMIC A 8 11.00 336.50 347.50
Assembly of MMIC B 4 5.45 22.00 27.45
i Assembly of Alignment Structure | 3 56 19 75

3 | SubAssy 3 1 42.00 712 20.00 69.12
RF Cap 32 0.00
MMIC A 8 0.00
MMIC B 4 0.00
Alignment Structure 3 0.00

Total 1 83.30 376.21 29.50 489.00

Figure 3-15. Substrate Assembly Process Model Summary Window. The cost to assemble a
substrate is itemized for both component and assembly levels. This Tile Assembly cost is subsequently
included in the Module Summary Window of Figure 3-16. (The ? at the left of Assy of Alignment Structure
indicates that this needs further definition.) Data shown is for explanatory purposes only.

3.3.1.4 Printed Wiring Board Fabrication. The Printed Wiring Board Fabrication
process model provides cost estimates for single-sided, two-sided and multilayer PWBs.
Information is input into the model regarding the quantity, physical size, material type,
and number of layers the PWB contains. Based on the input criteria, the optimal
quantity of PWBs that would be run on a multi-up panel and the number of panels
processed to complete the order quantity are calculated. The associated unit and
tooling costs are displayed in the process window.

A variety of material and process cost trade options are available to the user. These
are shown in Figures 3-17 and 3-18 and permit selecting between board materials;
specifying the number of layers, copper thickness, number of controlled impedance
layers, and line size; solder masking, silk-screening, electrical test costs, backside
sealing, gold plating; heatsink requirements and bonding; and the types and quantities
of terminals or pins.
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Assembly Costs 103.20 8.00 111.20
Assembly of SubAssy 1 .08 .08
Assembly of Housing sleeve .08 .08
Assembly of LRFAssy .08 .08
Assembly of SubAssy 2 .08 .08
Assembly of URFAssy .08 .08
3 | Assembly of SubAssy 3 .08 .08

3 |[SubAssy 1 100.03 242.28 51.50 393.81
Housing sleeve 37.50 .25 4.31 42.06

» |LRFAssy 35.70 18.57 1.25 55.52
% |SubAssy?2 72.18 160.95 27.00 260.13
3 | UFRAssy 36.63 32.55 1.25 70.43
3 | SubAssy 3 83.20 376.25 29.50 488.95
Taotal 468.92 830.85 122.81 1422.58

Figure 3-16. Module Assembly Process Model Summary Window. Library parts and other feature
part costs are shown in the bottom half of the table. (In the parts cost section, library parts are denoted
with the » symbol and new parts by the small “table” symbol). The cost to assemble each corresponding
part is shown in the top half of the table. Note Sub Assembly 3 which was totaled in Figure 3-15. Data
shown is for explanatory purposes only.

Costs are shown in the CA Cost Summary Window for each of the combinations
selected. This allows the designer to identify major cost drivers and make appropriate
design choices prior to manufacturing.

3.3.1.5 PWB Assembly. The PWB Assembly process model provides cost estimates
for surface mounted assemblies of the sort typically found in a tile subarray. Model
information is input regarding the type and quantity of components, assembly
production quantity, conformal coating, and electrical testing. Part numbers are entered
for each component type and the model then searches data bases to find part costs.
The associated processing cost is displayed for each type of component and quantity
selected. Design trades are made by changes to the type of component and part
number, quantity of parts, conformal coat needs, and final electrical test. Generally,
PWB assembly involves the mounting of passive components on a surface. An example
of the costs incurred for a typical tile subarray populated PWB assembly is shown in
Figure 3-19.
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Figure 3-17. PWB Material Selection Window. Different design/cost trades are possible using

various material options.
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Process TwoBided SO T

(86-02-+0) €61 1080-€90

TatalProducton 1000 Units [..]
LaborFey 2 | 12X/ C95

LaborRate > | 1.008 [o]
Vendor N Vendor? | Vendor3
MinLineWidth > |00 Inches [.004..]
SilkScreen? Ed v |

sikscreenSides = M
Solderhfask? 2 INEN Yes | SKOC

Electrical Test? N Yes

BacksideSeal 2. Yes

Figure 3-18. PWB Process Selection Window. Different process requirement selections are
possible, thereby permitting various design/cost trades between several process options.

3.3.1.6 Mechanical Assembly. The Mechanical Assembly process model provides
cost estimates for typical mechanical operations not covered in the CA Tool Design 6
“off-the-shelf” process model. Operations included are brazing, mechanical bonding,
hardware selection and installation, and various platings and coatings. The model prices
out three braze processes (vacuum, inert, and dip), mechanical bonding, typical
mechanical hardware (keensert, helicoil, dowel pin, coolant fitting, pin insert), and five
plating and coating processes (passivate, chem film, anodizing, cadmium plating, and
gold plating). Cost trades can be performed between braze choices, including the
complexity of the part, part size, braze material thickness/cladding, and if the assembly
is to be pressure tested. Designers can compare the costs of various hardware
installations and the different plating and coating processes. The resultant costs for
each feature are shown in the CA Cost Summary Window.
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Tvpe
Cost Ivlodel

Process

Assembly

PWaR/052

PrintedWiring A ssembly

06

80
11
93

16

Assembly Costs 1 15.69 25.00 40.70
Lgsembly of DC-5127582 1 1.26 1.26
Clonmector 92 Pin 1 3.47 6.25 10.42 20.13
Connector 104Pin 1 3.47 6.25 10.42 20.13
Caps_Tantalurr A 224 19.58 140.00 159.58
Caps_TantalunB 24 2.10 15.00 17.10
Caps_CeramicA 32 2.80 50.00 52.80
Caps_CeramicB 32 2.80 50.00 52.80
Fuses_104 128 11.19 48.00 59.18
[ e [ T T T 1 ]
¥» | DO-5127582 1 110.40 3.47 109.83 223.73
Total 1 172.75 319.00 155.68 647.50

Figure 3-19. Printed Wiring Assembly Process Model Summary Window. This illustration
shows the cost of assembling connectors, capacitors and fuses to a PWB. Data shown is for
explanatory purposes only.

3.3.1.7 RF Assembly. The RF Module Assembly Process model provides cost
estimates for three different subassembly packaging configurations: brick (see Section
3.1), intermediate tile, and advanced tile. In each instance, information concerning
supplier components, in-house designed parts, and assembly processes is added.

Various cost trades are possible:
1. Four structural attachment processes
» Screws
* Rivet screws
» Bonding
 Dry bonding
2. Torque or sealing of screws
Electrical test costs
Choice of interconnection style and quantity

» Solder
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» Wire bonding

5. Bonding material selections and how the bonding material is prepared
+ Laser trimming
« Automated or manual cutting

6. Varying supplier item quantities

3.3.1.8 Machining — Tool Design 6 (TD6). TD6 is a CA process model used to
provide cost and producibility analysis for the fabrication of parts using a variety of
machining methods. The model was developed by Cognition in conjunction with an
American jet engine manufacturer.

TD6 provides cost estimates when using different tools on various materials. The
model selects the optimal available stock size based on the specified material, part type
and dimensional requirements. Time estimates are generated based on standard
milling, drilling, EDM and lathe machining times, as well as material characteristics.
Time estimates are used to calculate process and material costs that are tabulated in
the CA Summary window.

This is a very useful basic model, and modifications to the default time and cost
values can be made to incorporate the characteristics of a particular shop, rather than
those of the originator.

The model generates estimates from the component description provided by the
user.

A sample view of the Modeler page of TD6 is shown in Figure 3-20. In this example,
the process is component machining, the material is aluminum, and the hole drilling
Feature option has been selected. The different hole drilling selections are shown, with
one of these to be chosen. In this instance, a standard hole was desired, and the costs
could be estimated after entering the information requested in the associated Material
and Process windows of Figures 3-21 and 3-22.

Should the costs of other machining operations be desired, such as milling, the
proper Modeler window would be accessed, from which the associated Material and
Process windows would be presented.
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(86-02-10) £61 1080-590

Process [agdetds
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Figure 3-20. TD6 Modeler Window. The selected parameters in this instance are machining-
aluminum-standard hole.

Composites

Copper | Mickel
Iachinability 2 | 2500
CostPerUnit > |20 §/Tb
X Extents
Y Extents
Z Eztents
Marerial | " Aluninum”

Figure 3-21. Material Window Associated with the Modeler Window of Figure 3-20. The X,
Y and Z dimensions of the part to be machined are defined at this point. Since aluminum was
added from the top material selection list, the machinability and cost per unit were automatically
added from a table of values within the TD6 model.
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Cost Advantage Process Window g
System@| EditB| Glose| ?| :
Part_Type 5 [Bar[ Hex[ Square |JEaag Tubing [ Bulk [ L_angle [ C_Channel[1_Be :
Envelope_Length 5 | | inches [..]

Envelope_Width v | | Inches  [...]

Envelope_Height 5 | | Inches  [...]

Stock_Height v | | Inches  [...]

Stack_Width v | | Inches  [..]

Stock_Length v | | Inches  [...]

Vendor_Name 5 Vendor2|Vendor3|Vendor4|Vendurs|

Machine, Type = Larhe | Drill| wire_EDM |

Part_Tolerance z [oo | Inches  [.000L..1]

Surface,_Finish > | Under 1644 ] 1644 1o 3284

Face_Mill_Size v |3.0 | Inches  [.125..3]

SerlUp_Mil > Average | Complex |

Figure 3-22. Process Window Associated with the Modeler Window of Figure 3-20. The
envelope dimensions are those from the X, Y and Z inputs to Figure 3-21; the corresponding
initial stock dimensions are then automatically determined.

3.3.1.9 Array Assembly. The Array Assembly model was tailored for tile array
assembly and developed at Raytheon so that the assembly costs incurred when putting
the array together could be easily estimated. The features covered are shown in the
Modeler window of Figure 3-23. These are the major components or subassemblies—
Circulator Assembly, Cold Plate, T/R Module, Level 1 Feed, PWB Assembly, Shear
Plate and Radiator—that are put together to form the array. Unique costs incurred when
installing selected subassemblies are accounted for when these are selected during the
assembly sequence. In this example, the radiator assembly is to be installed and the
options of using either conventional screws or an alternate (rivscrews) is shown. The
rivscrew option was introduced because a large number of small screws were being
used to attach sections of the circulator. This was a labor intensive operation, and the
time required could be considerably reduced by using rivscrews, which could be quickly
installed using a hand-held automatic feeder. The screw/rivscrew option was also
available when mounting the circulator assembly.
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Figure 3-23. Array Assembly Modeler Window illustrates the selection of the radiator assembly
installation.

This model includes items associated with producing an electrically functioning array
and factors in the number of systems to be produced per month along with any
additional equipment costs. This Process window is shown in Figure 3-24, in which
concerns such as electrical test, fault isolation, burn-in, and fixture costs along with the
labor costs incurred are identified.

The cost of an array assembly was determined by first selecting the appropriate Tile
Array factors from those listed in Figure 3-24, then denoting the part to be included
(such as the radiator assembly) and the mounting option (in this instance, either screw
or rivscrew). It was then a simple matter to subsequently access the library for
components or subassemblies and include their costs. In this example, the radiator
assembly costs would be imported. If more than one radiator assembly were to be
incorporated in the array, a change in the total parts was made to the resultant cost
summary list, where the additional costs would be automatically calculated. The
complete cost window for an array that was assembled using rivscrews for circulator
and radiator attachment is provided in Figure 3-25. This provides a breakdown that
separately lists the components or subassemblies and the installation costs of each.

3.3.2 Databases

Various databases can be accessed by the process models. Some of the databases are
simple flat files developed for common and specific process model applications that are
maintained in the UNIX model global directory. Other databases are in tables within a
given process model. Typical information contained in the databases include part
number and associated part cost, Process Characterization Tool Set (PCT) data, and
labor rates and factors.
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Figure 3-24. Tile Array Window. This incorporates electrical test considerations along with the

number of systems to be produced and test fixture costs. The cost of test fixtures becomes a

major item if more than one system per month is produced.

Databases are accessed using lookup functions contained within the process
models. The information requested by the lookup function is selected from the
appropriate database and returned to the process model. This data is then used to
develop cost or process information. For a more detailed discussion of databases, their
workings, and methods of accessing, see the Information Technology IT Architecture

final report in Section 6.

3.4 Subarray Design Cost Trades

To determine the effect on array costs of various design modifications, monthly
design/cost trades were completed utilizing the Cost Advantage models and using the
initial HDMP tile array concept as the baseline. How the JMD methodology was applied
is discussed below, along with a comparison of the calculated cost savings to the
monthly cost savings goal. This is followed by citing what worked and what did not,
along with suggested improvements.

3.4.1 Application of the System to HDMP Design Trades
Design information taken from HDMP drawings was used to determine process,

material and tooling costs.
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Systemal| Editq)| Viewina®| Debuad| o-o| Gose| 2|

>

g

Assembly Costs 1 1683.00 0.00 1683.00
Assembly of 5127601 ColdPlate |1 0.01 0.01
Assembly of 5127518 oduleload 3 1.48 1.48
Assembly of 5127661 LevellFeed] 3 12.02 1.80 13.82
Assembly of DO PWA 5137581 32 21.04 3.15 2419
Assembly of DC Connector 48 192.38 28.80 221.18
Asgembly of 5127504 8hearPlate | 1 7.01 1.05 8.06
Asgemnbly of 5127525RadiatorStrl 24 96.20 33.60 129.80
A ssembly of Radiator_assy_durm] 4 16.03 5.60 21.63
Assembly of TileModule & ssy 48 23.76 23.76
7 | Assembly of 5127656CirculatorAs| 2 12.02 4.20 16.22

3127601 ColdPlate 1 454.00 47.75 125.00 626.75
5127618ModuleLoadMechanism | =4 245 .91 2.09 0.00 248.00
5127651 LevellFeedAssy 3 1555.85 27.15 150.00 1733.00
DC PWaA_ 5127581 3 518.25 957.00 467.00 1942.25
DC Connector 48 180.00 180.00
5127604 5hearPlate 1 150.97 20.33 0.00 171.30
3127625 Radiator Saip(real) 24 7348.75 84.00 857.25 8290.00
Radiaror _assy_dummy 4 1287.20 11.72 116.08 1415.00
TileModule A sy 48 27200.00 39950.00 7350.00 74500.00
5127656CirculatorAssy 3 3285.00 15922.50 225.00 19432.50

Tatal 1 44110.88 47990.74 18580.33 | 110681.95

Figure 3-25. Total Costs Associated with the Assembly of a Tile Array Configuration. The top
portion of the table lists the assembly costs, while the bottom section contains the costs of the parts
making up the array. Data shown is for explanatory purposes only.

51




In preparing the cost estimates, the costs of lower-tier items were determined first
and the appropriate cost notes developed. These were placed in a notes library and
accessed when higher-tier item costs were determined. The process of calling up library
parts as feature characteristics in the higher level drawing estimates worked well, with
cost notes providing detail part cost data.

Options offered by the assembly process model included being able to select a
feature, library part, or a new part. If the feature option was selected, then the cost for
that feature was contained within the process model itself and the cost added to the
total. If a library part was required, then a parts number list was presented and the costs
for that part added to the new cost estimate. By double clicking on the sub-tier cost
note, the Process Model for that note could be loaded and the note details made
available for review. This process provided considerable cost design analysis flexibility.

It is also possible to modify a library cost note by revising the quantity, part number,
or part cost. Configuration management is critical at this point. If the change results in a
new cost note, then the “save as” feature works well. If the change simply updates an
existing design, then the corresponding cost reports and higher level estimates must be
updated accordingly in order for the new costs to roll up to the higher levels. The
effectiveness of this is somewhat dependent on the tenacity of the user to carry through
and update the other estimates.

When calling up a cost note from the note library, CA will notify the designer that a
cost estimate or process model is revised from the original. The designer must still
determine what the change is and the effect it has on the design.

To use the system effectively, supplier item part numbers and items that were not
being priced using the CA system had to be listed in a database along with the
corresponding costs. If a part cost was not known, then an estimated cost could be
added or revised in the summary window. This approach satisfied the immediate needs,
but there was a loss in traceability. Information on how the cost was determined was not
captured, so the cost information was not available for subsequent estimates.

Once a cost note had been developed, it was saved and added to the parts library.
Cost reports for each cost note could be generated and printed or saved separately.
However, if a cost note was updated, then a new cost report had to be generated. To
resolve configuration control problems, copies of the cost notes, the corresponding
process models, and cost reports were saved in separate monthly directories.

3.4.2 Subarray Design/Cost Trade Results

Baseline costs were established for a 192-element prototype subarray using the tools
and techniques established in Phase |. Using this baseline, design/cost tradeoffs were
to be made on a monthly basis, with an objective of reducing the estimated subarray
cost by 15-25% over a 14-month period (June 1997—August 1998). It was expected that
iterative design/cost trades would provide a 20% cost savings, with further cost
reductions realized when design producibility was subsequently reviewed at a Design
for Manufacturing/Assembly (DFMA) workshop.
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The design/cost savings for a 192-element subarray in June 1997 were 7.5%. The
accumulated cost savings through August 1997 was 9.6% compared to a goal of 10.4%.
During the August cost reduction exercise, some errors were noted in the baseline cost
estimate. For example, the feed was added to the module connectors at both the level 1
feed assembly level and the array assembly level. In addition, design modifications
were such that the baseline configuration no longer correlated to the original 192-
element subarray integrated parts list (IPL).

It was necessary to rebaseline the subarray to a new IPL and reprice the monthly
cost/performance savings. Rebaselining showed the June design/cost trade savings to
be 6.9%. In July this increased to 8.4% and in August the total subarray savings was
9.2%. The accumulated cost savings through October 1997 was 10.5% compared to a
13.4% goal. The monthly factors that provided these savings were:

1. June '97: A reduced cost tile module

2. July ’97: Replacing the bellowed housing sleeve of the module housing with a
solid sleeve

3. August '97: Applying the Strategic Sourcing concept to the internal ring frames in
the module

4. September ’'97: Using rivscrews to assemble the radiators, attaching the
radiators to the circulator assembly, assembling circulator assembly and feeds,
and eliminating keenserts from the circulator assembly for radiator attachment.

5. October '97: Removing all features in the cold plate relating to a discontinuous lid
on the module (there would be a reduction in cold plate machining costs).

An example of the savings possible using an alternate assembly approach is
provided by considering the September 1997 tradeoff, where conventional screws were
replaced by rivscrews. Large numbers of small screws were used to attach the radiator
covers to the bases, to attach the radiators to the cold plate, and when assembling the
circulator assemblies and feeds. When determining the initial costs, it was assumed that
all screws would be manually inserted. This was labor intensive, especially since the
small screws (sizes 0-80, 2-56 and 4-40) had to be individually handled and care had to
be taking to ensure that the screws were vertically inserted and the threaded holes were
not stripped. It was obvious that an automated screw insertion approach would provide
significant labor savings and limit the likelihood of screw misalignment.

The use of rivescrews as an alternate to conventional screws was revealed during a
survey of possible suppliers offering rapid fastening methods. This technique (available
from Textron, 704-888-3583) combines the speed placement of a rivet with the
removability of a screw. Cost savings are possible since there is no need to thread the
rivscrew holes (or, in the case of radiator attachment, there is the elimination of
keenserts) and the threaded rivscrews can be automatically inserted into unthreaded
holes using a power tool. Manual handling of individual rivscrews is eliminated, since
initially these are provided in the form of long rods (each containing multiple rivscrews)
and can be quickly loaded into the power tool prior to installation. Individual
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rivscrews can be replaced once using the automated insertion equipment. Subsequent
rivscrews would have to be replaced manually, just as would be required when using
conventional screws. The use of rivscrews rather than screws provided an estimated
0.9% reduction in costs.

It was expected that the 20% savings goal would have been satisfied over the
succeeding months through the use of enhanced circulator carriers, improved DC
connector design, and integrating and compacting some of the active monolithic
microwave integrated circuits (MMIC) chips in the module. The cost saving calculations
for the month of November 1997 had been initiated just when program stop work
instructions were received. The monthly cost saving results and cost reduction goals are
shown in Figure 3-26.

3.4.3 Subarray Cost Estimation Cycle Time Results

It was mentioned previously that the primary objective of the Phase Il full demonstration
efforts was to show significant design/cost tradeoff reductions in tile subarray production
costs. A secondary objective was to show that a 50-75% reduction in tile subarray
design/cost tradeoff cycle time was possible. Although this latter effort was not finalized
because all subarray design drawings were not complete at the time the program was
descoped, it was apparent that the targeted savings could be easily realized.

The conventional method of estimating production costs involves obtaining supplier
quotes, and quotes were requested using some completed drawings. In these cases,
the quote cycle ranged from 2 to 4 weeks. For this evaluation, it was estimated that the
average cycle time for each quote would have been 3 weeks. It is estimated that 30+
drawings would have been necessary to complete the array design. Assuming that it
requires a minimum of 4 hours to process each quote (this would include interfacing of
the designer with the company purchasing agent and the interfacing of the purchasing

M Planned | | Array Data Iterative Design/ DFMA to Exceed|g
O Actual Capture and Cost Trades to 20% Savings 5
Initial Array Achieve 20% Savings l 8
0.25 Cost Reduction}><Z g
/ / \ * \ 2
o 02 8
g E
€ 0.15
Q
=
o 0.1
o
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Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul
1997 1998

Figure 3-26. Planned and Calculated Monthly Cost Savings for a
192-Element Prototype Subarray. The cost savings analysis effort
was descoped after completing only the first 5 months of the
14-month study.
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agent with the supplier), it would require at least 120 hours of labor at Raytheon (the
supplier cost is not estimated).

In contrast, only 64 hours were required to establish baseline costs using the JMD
software. And subsequently, both the cycle time and labor time required when
determining the cost reduction trades was only a few hours each month. The June 1997
cost savings, involving a simple change, were determined in less than 3 hours. For the
following months, July through October, the average cycle time and labor required when
making the cost savings estimates was approximately 6 hours per month. This equates
to less than 90 hours total using the JMD methodology. In addition, the 3-week
turnaround cycle was avoided, along with the need to interface with purchasing agents
or supplier representatives.

These figures illustrate that it is possible to enjoy considerable savings, both in time
and expense, when initial comparative cost estimates are readily available without
obtaining supplier quotes. This is particularly advantageous when making relative
comparisons between a number of different approaches or when varying a design
concept. In these instances, cost data could be obtained within a few hours and
decisions buttressed by cost estimates made using consistent analyses. Whereas, if
supplier quotes were necessary, it would be very difficult to obtain a cost breakdown
regarding a number of alterations, especially if there were many and they were made
sequentially.

Using this approach, by providing consistent cost analyses using a software
estimating system such as Cost Advantage, it is possible to economically determine the
most economic direction (or the least expensive choices) from a menu of options. Then,
once this is completed, obtaining competitive estimates from a variety of sources can be
developed. It was considerably less expensive to compare various design directions
using cost analysis software than to obtain supplier quotations, especially when
calendar time is considered, and when it is realized that many cost estimates can be
completed in the time it takes to send a drawing out and receive a single evaluation.

3.5 Lessons Learned

3.5.1 JMD Implementation Issues

The mini and full demonstrations showed the utility of the JMD methodology in assisting
design IPTs to make rapid, well-informed cost decisions. We believe the
demonstrations proved that the JMD methodology is sound, and can ultimately result in
more robust products at significantly reduced cost. However, as anticipated,
implementing the toolset that supports the methodology within a large corporation
proved to be challenging for several reasons.

When selecting the JMD toolset, we knew that we would have to interface with
Raytheon’s legacy databases, and the format of the legacy process/component cost
databases would not be directly useable by whatever toolset JMD selected. For the
mini-demonstration, we were able to populate our databases with the
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necessary information required to support design choices. We were also able to
demonstrate how, using Virtual Database Agent (VDA) technology, the data could be
pulled from legacy databases into Cost Advantage and used by the IPT in near-real
time. The system worked well when pricing out standard manufacturing processes using
linkages that employed lookup function calls.

As we proceeded with the full demonstration, applying the methodology to a higher-
level, more complex assembly, we found that process model effectiveness was greatly
impacted by the detailed manufacturing process data and options captured within the
databases. We found that the information contained within the databases was not
broad enough to support a wide variety of design choices. In some cases, the
databases did not contain new processing techniques and associated costs for new
state-of-the-art technologies that would enable more robust, lower cost designs. We
experienced some lack of part number cost data and process characterization data
associated with new parts and processes.

During the full demonstration we also learned that the system was affected by
variability in model building techniques. Because we had four engineers develop nine
separate process models, there were some inconsistencies between models in the way
data was input and exported. It became clear that standardization was important.

We also ran into configuration control issues as the full demonstration progressed.
As we began updating our process models to add more details and design choices, we
found that keeping close configuration control is critical. Cost Advantage software did
not incorporate clean methods for maintaining configuration control. We found that
trying to maintain tight control on model configurations caused updates to higher level
cost notes to be much slower and time consuming.

During the mini-demonstration, shown to be linking of a simple Pro/E design to
Cognition’s TD6 fabrication process model was possible. Demonstration parts
consisting of plates with various holes, cuts and slots were successfully cost analyzed
by automatically transferring the design to the model. The flexibility of the transition
process was also demonstrated by removing and adding features to the drawing and
easily importing the data to the TD6 model. However, when applying the link to a more
complex design such as those developed for the HDMP concept, it proved difficult and
time consuming. Problems with annotating the Pro/E features immediately became
apparent. These features were either difficult to find (the screen magnification had to be
continually adjusted) or the features were too complex and additions to the interface
software were required to facilitate the data transition. It was apparent that, further
considerable development was necessary to overcome these issues.

As the program progressed, we developed plans to solve all of these issues. We
began adding “breadth” to our process model databases by capturing new technologies
and components that were being developed by other active array programs. We nearly
completed updating our CORBA-compliant electronic linkage capability to legacy
databases and the process characterization toolset. We strategized on how to maintain
the system with the latest component and process cost information at the corporate
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level. We began generating documentation that would standardize how our process
models were developed across the corporation. Working with Cognition Corporation,
we held several meetings and weekly conference calls to address the configuration
control and Pro/E link issues. We began strategizing on how to standardize our
approach to 3-D modeling so that the Pro/E link could be made more user friendly. This
included establishing standard feature libraries and the developing software that would
aid the transfer of feature data to the CA Process Model. We were making good
progress at defining, solving and documenting all of these important large-scale
implementation issues when the program was descoped. We are confident that the
program could have successfully addressed all implementation issues by the originally
scheduled completion date. However, for now, these issues still remain to be resolved.

3.5.2 Considerations for Implementation
Suggestions to improve the usability of the system are noted below.

1. Allow sufficient time for planning and organizing how the models are to be
introduced and what they will cover prior to beginning the writing of the models
themselves. This could require considerable “brainstorming” and concept
development so that a detailed roadmap could be initially prepared. At the
corporate level, a comprehensive plan should be well thought out and funded so
that all material, process, and component options can be included within the
process models. The maintenance of the process models is something that a
company must sign up for if the JMD system is to remain effective.

2. Accessing legacy data banks outside the normal computer environment is not a
simple task, and sufficient time, money and focus are needed before this can be
completed. Also, there needs to be an accounting of the maintenance costs
associated with an expansion of this degree, since factors such as outside
equipment and software purchases have influence.

3. A plan for configuration control has to be established at the beginning of a
program. If CA were to be extensively used, a protocol would have to be
mandated, otherwise model control would quickly become nonexistent and early
cost notes would lose flexibility as models were modified without recording.

4. Linking of complex Pro/E models to any CA model will require commitment at the
design management level. To take advantage of such a capability, it is necessary
that designers be trained to use only those features that can be converted to a
CA model. Extensive feature software feature description and updating of models
might be necessary.

5. Adequate training of those responsible for the writing and maintaining process
models must be assured. This also includes familiarity with the UNIX computer
system.

3.5.3 Detailed Lessons Learned
The following are the lessons learned that occurred during development of the
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knowledge bases and when making design/cost trades using JMD methodology.

1.

Training in model building techniques is critical. Model building candidates need
to be trained in the functionality of the CA system, UNIX, and be thoroughly
familiar with the user manuals. The manuals cover the basics and assume that
the model builders have had on-line training with some model building
experience. The manuals can be difficult to follow for a beginner.

. To prepare adequate models, good communication between authors is

necessary; i.e., it requires the joint efforts of personnel familiar with the CA
programming approach working with those familiar with the processes of interest.
Experience with the UNIX system is necessary in the former instance, along with
considerable practice in module development, while those responsible with
providing process information must have a clear idea of what is to be covered
and how it is to be addressed.

Detailed planning covering the scope of each model and the detailed process
options that are to be included is needed prior to the preparation of cost models.
The orientation or focus of the process models developed to cost out the phased
array antenna was selected (because of program time constraints) after
considering only the subassemblies and components making up the tile array.
When developing the tile array process models, some of the models were too
product-specific and could not be used in other applications. As an example, an
assembly model was generated that dealt only with particular aspects of putting
the antenna array together. From a generic viewpoint, it would have been better
to develop an assembly model that encompassed a wider variety of assembly
techniques.

. Presentation of design/trade options needs to be pre-planned. During model

development, there were difficulties encountered when selecting design options
or features from within the CA system. These could be chosen either by selecting
“add feature” from the pulldown menu or by placing the design options in the
process window for selection. It seemed that the pulldown menu method worked
well for the process models when the feature characteristics were sequentially
assembled and known. If the trade options were not known, then the process
window listing the various selections seemed to work best.

Keep detailed notes in the appropriate editor windows when developing a cost
model. This is very important because it often is the only documentation
describing why a particular approach or formula was adopted.

There is no way of differentiating between an estimate and a quote. This is
needed so that when costing exercises are completed using quotes for some
components and estimating for others, this difference can be identified.

Learning curves should be included in a cost model so that volume production
estimates can be provided.

TD6, the basic machining model provided by Cognition, provides good
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relative estimates when using a variety of machining techniques and can be
readily modified to incorporate aspects (such as different labor costs, various
assumptions concerning particular equipment) unique to a particular machining
site.

. Being able to import or export information to other programs such as Word or
Excel would greatly expand CA’s flexibility.

10.To maintain a cost estimate history when making process changes it is

necessary, each time a record is desired, to open a designated directory and
save all the files that were involved. Configuration control can become difficult.
Configuration control must be consistent so that tracking changes to a model or
cost note is possible. Often a model would be updated after it had been used to
complete a cost note, which would negate use of the original model when
attempting to make a subsequent cost analysis using the original note.

11.When developing very simple designs, it is possible to link Pro/E to the CA TD6

model and automatically arrive at an estimated cost.

12.The linking of Pro/E to a CA model is not sufficiently developed for use in

automatically determining costs of designs that incorporate many different
features (complex or unusual shapes, combinations of different structures). To
expand the linked cost estimating capabilities to the degree necessary for routine
use, it is necessary that methods be developed that will convert Pro/E features
into identities that can be read by the model. This might be accomplished by
maintaining a Pro/E User Defined Feature library that would be used exclusively
to prepare drawings. The cost of establishing such a library and restricting
designers to its use needs to be evaluated from a return-on-investment
viewpoint.

13.When a cost note is completed by using the link between Pro/E and CA, any

identifiers (such as changing the nomenclature “cut d4” automatically provided by
CA to the identifier “Tile Module mounting slot” by the user) are lost when the
note is upgraded. This then requires that the descriptive identifiers be retyped by
the user, which can be very time-consuming and often leads to errors in spelling
and naming inconsistency.

14. Attention should be paid to any continued supplier development in linking the CA

system to Pro/E and evaluated in the future when the suppliers have resolved
current linking issues.

3.6 Conclusion and Recommendations

The major objectives of this investigation, to document and quantify design/cost tradeoff
reductions within a demonstration concept, were met. The Cognition CA software was
used to estimate the costs associated with the fabrication and assembly of a complex
design. The example selected consisted of a variety of structures that had to be
machined, fabricated or assembled to complete the build of a prototype array.
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The flexibility associated with CA was used to capture existing Raytheon processes and
it was shown that these could be readily modified or updated as needed to incorporate
new processing steps. This provided a consistent, easily used method of determining
relative costs. The effects of design changes or the use of alternative assembly steps
on costs were readily documented and identified; this was shown by illustrating the
percentage reductions in overall costs that could be realized when introducing design
modifications, such as changing the module’s bellows sleeve configuration to an
extruded concept. The possibility of directly linking a Pro/E computer generated design
with a CA model was demonstrated by determining the costs associated with various
features machined into a plate. The limitations of the Pro/E to CA linkage were also
explored and it was shown that considerable development would be required before this
capability could be used on a routine basis to analyze complex structures. It was shown
that data from external databases could be accessed and used in cost determinations.
The importance of adequately planning the scope of the process models and training of
those that are to prepare the models was emphasized.

The advantage of having a computerized system that could be used to rapidly
determine the costs associated with a particular design are obvious. There are a
number of cost analysis programs available, but few that deal with the details
associated with machining, fabrication and assembly of parts. The Cognition CA system
addresses this niche when dealing with simple structures or when data can be manually
introduced into the model. An example of this is the development of Cognition
ToolDesign6, which can be used to determine the effects of various machining
parameters. This model could be adopted for use by any organization by modifying the
internal tables dealing with labor rates, machine speeds, etc., so that they reflect the
particular capabilities. Linking CA to outside databases and using this data to determine
cost estimates is possible. This program did not complete the verification of the system
on complex assemblies using CORBA-compliant information technology. We did learn
that linking, either from a computer-aided design base or to tabulated data, requires
considerable support to implement and maintain. To expand the use of CA within the
corporate environment (i.e., widen the implementation range), it is necessary that it be
fully accepted, embraced and maintained and that the parameters of use be carefully
defined.
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4.0 ACTIVITY-BASED MANAGEMENT FOR THE JMD PROGRAM

4.1 Introduction

4.1.1 The Need for Activity-Based Management (ABM)

Traditional accounting systems show what costs have been accumulated in a
manufacturing process weeks or months after the costs have occurred. By then it is
usually too late to call attention to unplanned activity of events which could result in
eventual cost overruns before variations from the budgeted amount have occurred. In
addition, the cost collection accounts are not consistently defined from program to
program and may reflect variations in the system that are not related to either the
accounting process or the manufacturing process. For example, on one product the
“design” account may be used only by designers working on the design stage of a
product; on another product, it may include design, prototype manufacture, redesign,
and preproduction tooling.

Detailed information about cost elements for electronic assembly processes was
collected according to the methodology set forth in the Activity-Based Management
(ABM) manuals produced earlier in this program. The methodology describes how to
collect detailed information about time charges, purchased parts, capital equipment and
other costs associated with manufacturing in an activity-oriented accounting system.
This information is immediately made available to the program manager, the business
personnel, or the manufacturing supervisor for the purpose of tracking cost variations as
a product is being designed and manufactured.

Within the JMD program, this task was leveraged by coupling it closely with the
Process Characterization Toolset (PCT) task. ABM or ABC (activity-based costing)
systems collect information, by activity, on what is actually happening in near-real time,
while the PCT provides the necessary detail and history, by process, for what should be
happening. As we have defined it within the program, the activity and process describe
the same manufacturing event. While ABM defines what is occurring, PCT defines what
is in control. Both methodologies require working with personnel and documentation on
the manufacturing floor and in the accounting organizations to obtain the necessary
information, which can be used to drive cost accountability based on activities. In the
JMD program, the information has been gathered from the HE Microwave (HEM) factory
in Tucson, Arizona. During the actual build of a product in a representative program,
ABM data was to be collected and compared with data from the traditional ledger
system. This comparison would result in both a refinement of the original activity
description and an accurate assessment of the origin of costs associated with the
product. The original demonstration vehicle for this program was the tile
transmit/receive module being developed under the ARPA-funded High Density
Microwave Packaging (HDMP) program.

4.1.2 ABM Methodology Development
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The model that was constructed of the HE Microwave factory in the previous phase of
ABM activities in the JMD program was used to distribute manufacturing floor and
process engineering labor according to the activities that would be associated with the
HDMP product. Because the HDMP program began suffering production schedule slips
due to material issues, we decided to extend our ABM methodology by comparing and
contrasting additional programs at different stages of production to HDMP data, with the
approval of HEM and the additional program offices. Even though we didn’'t have the
complete data for any one design-to-production process, we had pieces of information
that could be patched together to form a “big picture” for manufacturing evolution from
single, small scale prototypes to production volumes that could be seen typically for
defense manufacturing or low-volume commercial manufacturing. This unique
opportunity to examine cost drivers in the HDMP program and compare them with other
similar programs became the demonstration vehicle that we would use to illustrate the
usefulness of the ABM methodology. Because the program descope cut short our data
taking, we were not able to verify all the trends that we thought might exist. However, in
the following sections, we will show how costs in traditional ledger systems do not
clearly map into activities and that the variations between programs are not uniform.
Figure 4-1 illustrates this point by showing the activities and resources from the ABM
model in the first column compared to the actual charge accounts used for three
example programs (including HDMP) in the next three columns. The blank rows indicate
which activities and tasks are not being tracked at all within the traditional systems.

All of the activities evaluated by the JMD program contained three major cost
variables that the designer could control based on design trades. Direct labor for
supervisory, engineering and production personnel as well as labor for administrative,
finance and purchasing support was nominally the largest category for data collection.
The second category was the costs attributed to the purchased parts used in
production. Equipment utilization was defined as being the third and last category that
would have an impact on cost. Areas such as building rent, taxes, and other overhead
related costs, although they contributed to cost evaluations in ABM, did not appear to be
variables that the designer had any influence over in the design process. They also
were not variables that would be controlled by manufacturing.

We made one very important addition to the original program by coordinating ABM
information with the PCT, allowing us to define and track activities down to the task
level. By working with production, we defined detailed activity drivers, or tasks. Even
though this was more detail than production personnel were accustomed to, they could
see the benefits and were willing to help us track the data. Since it was not clear from
this attempt at ABM how to accurately define the level of detail required, this appeared
to be the proper approach to collecting information without incurring unnecessary
burden to either the JMD or the HDMP programs. This approach would allow us to
collect cost information after design, but before the low rate initial production (LRIP)
phase. For the JMD program, this would be sufficient to show how the tools worked. For
the ABM task, this additional information allowed us to track
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PROGRAM #1 PROGRAM #2 PROGRAM #3

Demo Program HDMP Low Power Module

ENGINEERING

PROJ MGT B21 C1

CONCUR ENG C2

NRE TEST STATION

PRODUCTION READINESS

PRODUCTION CONTROL

SYST INTEB. MFG

FACTORY SUPV

BALL INTERCONNECTS B22

FLIP CHIP R&R B23

HERMETIC SEALING B24

TILE MODULE REDESIGN B25

PROCESS DEVELOPMENT C3

TEST DEVELOPMENT C4

QUALITY ENG

INDUSTRIAL ENG

DESIGN/DRAFTING/DOCUMENTATION

PROCESS AND TOOLING

CONCEPT UNITS

BUILD C5

TEST C6

PARTS PROCUREMENT

EDU BUILD

“BETA BUILD”

PROCUREMENT SUPPORT B26

MATERIAL B27

PRODUCTION LABOR B28

PRODUCTION SUPPORT B29

PROJ MGT

PROCESS/MFG ENG/TOOLING

QUALITY

TEST ENG & TOOLING

INDUSTRIAL ENG

DESIGN/DRAFTING/DOCUMENTATION

PRODUCTION CONTROL

SYST. INTEG MFG

FACTORY SUPV

TEST FIXTURE DESIGN AND BUILD

LRIP

MATERIALS A442 C8

ALL LRIP NRE; PROG MGT & ENG Ad11

ANDY CONNORS/STE A412

MCC CARDS A413

LRIP SHOP FLOOR BUILD SUPPORT A431

LRIP SHOP FLOOR REWORK A432

LRIP & PROD PURCHASING SUPT Ad441

LRIP TOOLING A451

LRIP PERISHABLE TOOLS A452

LRIP PACKAGING A453

LRIP RECALL REWORK A433

ASSEMBLY Co1

TEST C92

SUPPORT C93

PROBAM MANAGEMENT

PROC & MFG ENG./TOOLING

QUALITY

INDUSTRIAL ENG

DESIGN DRAFTING & DOCUMENTATION

PRODUCTION CONTROL

SYST INTG. MFG

FACTORY SUPV

PRODUCTION

PILOT MTLS A443

PROD BLD LABOR/MTLS

PROD BLD SUPPORT LABOR

PROD BLD ENG. BUILDS

PROD BLD SPECIAL ACTIVITIES

PROD BLD OTHER

LINFINITY MATERIALS A444

SPARES Ad445
Figure 4-1. Variability Between Programs Makes it Difficult to Track Charge Accounts and

the Activities That May Be Associated With Them. Each program defines charge accounts
based on the program’s direction and the program manager’s experience. Note that not all
programs are at equivalent manufacturing levels.
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manufacturing evolution, since the change in distribution of time charges would change
from process development (at the beginning) to assembly for an individual activity.

The activity-based model developed to map the HEM organization into activities,
drivers, resources, etc., in turn mapped very well into the processes that were defined in
the process characterization methodology. In principle, the process characterization
methodology would be collecting information and data on variations in the process
based on design changes. It seems natural that since the ABM activities map well to the
processes, then ABM should be collecting the costs about the actual process variations.
In short, ABM confirms what is happening in the processes, while the process
characterization details what should be happening in the processes.

In this final report, we will show the data that we did accumulate, with the caveat that
“piecing the puzzle” together may not be as objective as we would like nor should it be
considered final, since some of our assumptions might have changed if we had
additional data.

4.2 ABM Evaluation at HE Microwave

In this section we discuss in detail the lessons we learned from trying to implement ABM
cost tracking in a facility that produces both commercial and military hardware. HE
Microwave assembles T/R modules designed by Raytheon. T/R module designs are
very complex by nature. Difficulties in the designs have caused increases in costs and
scheduling problems in the various programs on which the two firms have collaborated.
HE Microwave process engineers have a great deal of experience in identifying and
correcting these problems, bringing production programs in under schedule and under
budget. Because Raytheon is always pushing the state of the art in T/R module design,
each new program brings a new set of challenges. This environment provided the
opportunity for cost studies with the PCT that were more global, focusing on the
generality of the theory that better knowledge would produce better designs and thus
lead to lower costs for government programs.

4.2.1 Planning Phase

One reason the HDMP program was originally chosen as an ABM demonstration
vehicle is that it was to be a small build (originally fewer than 200 modules), giving it a
short build schedule of less than 6 months. As mentioned, although designs had already
been done, it was felt that design-related data could be captured by using the interview
process with HE Microwave engineers. By the time this project was under way, the
volumes on HDMP had been reduced first to fewer than 100 modules, then to only 25
modules. It was felt that this might not yield sufficient data or provide a long enough
timeframe over which to study the relationship between activities and costs.

Two additional programs were added to the project, both of which were products
with similar designs and activities to the HDMP product. The low power module product
was also past the design stage and already in prototype (or EDU) development and
build. Its design is similar to HDMP but simpler (see Figure 3 in the PCT report for a
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comparison of technical details). The Program 1 product was in Low Rate Initial
Production (LRIP) and required more parts, but was a more “traditional” design. The
addition of these two programs would provide tracking of a product through the various
stages of production, allowing us to piece together the total picture for this particular
module design. Because of the limitations in our data collection that were already noted,
we will focus primarily on data from Program 1.

4.2.2 Activity Analysis

HEM already had a complete activity-based model of its facility built using the OROS
software. OROS is an ABC modeling, PC software program that is commercially
available from ABC Technologies in Beaverton, Oregon. The addition of the other two
programs gave us the data necessary to populate that model with information related to
the various phases of production. Utilization of the individual activities varied and is
explained in more detail in the next section.

HEM'’s labor and shop floor control system is a software program called Manbase.
Manbase is commercially available from Insopower, Inc., in Plano, Texas, but HEM has
customized the program to better meet its shop floor control needs. This traditional
system can supply labor hours charged in a program by person and by task. No
accounting exists for activities. For this reason, one of the first steps necessary for the
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OPEN FACE MODULE

ADHESIVE EPOXY/
TEST

SOLDER
SURFACE MOUNT
ASSEMBLY
MECHANICAL
ASSEMBLY
SERIALIZE

DIE ATTACH
WIRE BOND
HERMETIC SEAL
MODULE TEST
ENVIRONMENTAL
TEST

OTHER

LABOR COLLECTION WORKSHEET
PROCESS DEVELOPMENT/REFINEMENT
MACHINE PROGRAMMING
INSPECTION
TOOLING (design/acquisition)
TROUBLESHOOT
SETUP (machine/materials)
MATERIAL STORES
ASSEMBLY
QUALITY/MRB
INDUSTRIAL ENGINEERING
PRODUCTION CONTROL
TRAVEL BETWEEN BLDGS 809 & 848
OTHER:

TOTAL HOURS

Figure 4-2. Each Process Engineer Works on a Variety of Activities. Within the activity there are
tasks that consume time at different stages of the program and the process maturity.
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ABM modeling was to create the table shown in Figure 4-2 so that process engineers
could define their hours based on activities and activity drivers, at the task level (this
additional information would also help correlate observations with the PCT). The
process engineers also helped us to correlate the names of the production personnel in
Manbase with the activities that they would be performing according to the ABM model.
This way we could partition the time charges for the production personnel approximately
the same way the work would be carried out on the factory floor. These two simple
additions to the Manbase timekeeping system allowed us to achieve accountability for
manufacturing by activity.

Purchasing was able to supply us with the cost for each of the parts in the bill of
materials (BOM). This information was to be gathered by program but did not include
any Raytheon-supplied parts. An equipment utilization model used by the process
engineers was also incorporated in the ABM. With the labor distribution, parts costs and
equipment utilization, all the necessary information for ABM was available.

We collected data on the three programs and put them into two different formats. In
the first format, the normal accounting system, time charges are accrued under one of
the several charge numbers shown in Figure 4-1. In the second format, our ABM
approach, each person defines his or her time charges based on activities (these are
the same activities that are defined in the PCT) and tasks within the activities (these are
the same as the COST parameters in the PCT).

This initial data shows a number of interesting effects open to multiple interpretations
since we were working with data for only a few months and for two different programs
(HDMP and Program 1). The summary table shown in Figure 4-3 was compiled from the
Labor collection worksheet shown in Figure 4-2 and an analysis of the Manbase system
for the same time period and the same process engineers that were represented on the
worksheets. At this stage it is worth listing the effects:

* Figure 4-3 represents time charged on Program 1, which is in the LRIP phase.
As shown in the figure, there are distinct differences between time charges
accrued in the normal accounting system and the ABM system. ABM actually
shows that each of the major activities are being worked by the process
engineers. All the time charges occur in the first activity (the first process step).
ABM also shows which tasks within the activity are being worked. The
traditional accounting system shows only that work is being charged to “Shop
Fir Bld/Supt” without detailing which activity is being worked.

* The added detail in the ABM methodology helps highlight the tasks being
worked within each activity. Also note that the discrepancy in the total hours
can probably be attributed to that particular engineer working on tasks that are
not related to the particular process; e.g., design reviews, etc.

« Although not shown in the figure, we collected data that shows that there are
distinctly different distributions of charge numbers between the HDMP program
(just starting) and Program 1 (entering LRIP). This would also be expected,
since the programs are at different activity and maturity levels. The
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distribution of charges helps highlight program maturity.

ABM METHOD TRADITIONAL METHOD
ACTIVITY CENTER MANBASE ACCOUNT
NAME CHARGED TASK CHARGED HOURS CHARGED HOURS
Engineer #1 | OTHER TRAVEL 2 A431-SHOP FLR BLD/SUPT 11
OTHER OTHER 1
3 11
Engineer #2 | WIREBOND PROC DEVEL 7.5 A411-PROG MGT/ENG 7
MACH PRGMG 11.5 A431-SHOP FLR BLD/SUPT 56
INSPECTION 7.5
OTHER TRAVEL 35
30 63
Engineer #3 | MECH. ASSBLY MACH. PRGMG 7.5 A411-PROG MGT/ENG 24.5
SURF MT ASSBLY MACH PRGMG 2.5 A431-SHOP FLR BLD/SUPT 49.25
MECH ASSBLY TOOLING 215 A432-REWORK 3
ADH SOLDER TROUBLESHOOT 3
OTHER OTHER 1.5
OTHER TRAVEL 2
MECH ASSBLY INSPECTION 8.5
MECH ASSBLY SETUP 2
MECH ASSBLY PROC DEVEL 5.25
53.75 76.75
Engineer #4 | HERMETIC SEAL PROC DEVEL 1.5 A431-SHOP FLR BLD/SUPT 52.6
ASSEMBLY 23
TOOLING 0.5
REWORK ASSEMBLY 4.7
OTHER 0.5
OTHER TRAVEL 1.5
31.7 52.6
Engineer #5 | OTHER QUALITY 35 A431-SHOP FLR BLD/SUPT 186
ADH SOLDER QUALITY 5
DIE ATTACH QUALITY 19
WIRE BOND QUALITY 20
OPEN F MOD TEST QUALITY 14
HERMETIC SEAL QUALITY 2.4
OTHER TRAVEL 0.9
MECH ASSBLY QUALITY 6
MODULE TEST QUALITY 5
107.3 186
Engineer #6 | MECH ASSBLY QUALITY 13.5 A431-SHOP FLR BLD/SUPT 74
OTHER TRAVEL 4.5 A432-REWORK 2
MECH ASSBLY PROC DEVEL 2
TOOLING 3
SETUP 1
SERIALIZE SETUP 3
WIRE BOND QUALITY 3
SERIALIZE QUALITY 1
INSPECTION 1
ASSEMBLY 2
34 76
Engineer #7 | DIE ATTACH MACH PRGMG 14 A431-SHOP FLR BLD SUPT 88
TROUBLESHOOT 2
INSPECTION 3
PROC DEVEL 5
SETUP 4
28 88

Figure 4-3. Comparison Between Program 1 Time Charges from the Manbase System and the
Activities the Engineers Claimed They Worked

Figure 4-3 helps to demonstrate how ABM is useful for tracking not only costs, but
also program status. For example, during the startup of LRIP, it would be expected that
there would be charges to tooling and process development. Figure 4-3 shows
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that this is indeed the case with Program 1. As LRIP matures, there should be virtually
no tooling or process development charges. Charges to these tasks are readily
apparent in the ABM system, and could possibly go totally undetected in the traditional
system. A charge to tooling under LRIP would be a red flag to a program manager that
there was a problem with an activity center. Under the traditional system, the tooling
charges would get buried in one of the “generic” accounts. Cost escalation due to a
process problem might go undetected for some time.
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4.2.3 Analysis of Output

For Program 1, one month’s worth of production data is shown in Figure 4-4. This figure
allows us to compare data for the cost of equipment, parts and labor for this product
from the ABM model. In addition, the figure has the cost for each of these categories
broken down by activity (Figure 4-3, which incorporates the task spreadsheet from
Figure 4-2, takes the detail one step further: we now know by task what work was being
accomplished). From this figure, it is easy to see that more than 33% of the total cost of
the product is associated with buying and placing the electronic components (sum of the
dollar value for the items in the row marked “die attach” divided by the sum of the total
cost). Another 30% of the product cost can be accounted for in the testing of the module
after it is built.

The second set of columns contrasts this information with expenses from a
traditional ledger system. The first noteworthy item is that there is no accountability for
equipment costs. Second, parts are only accounted for as a single lot value. Finally, by
referencing the account numbers to those shown in Figure 4-1, there is absolutely no
way of identifying which process costs the most and, consequently, which process
should be targeted for improvement and cost reduction.

VISIBILITY WITH ABM TYPICAL LEDGER ACCOUNTING
TRADITIONAL
ABM LEDGERS
EQUIP- TOTAL EQUIP- TOTAL
PARTS MENT LABOR COST PARTS | MENT LABOR COST
Adhesive Solder 6.30% 0.87% 4.89%
Surface Mt Assy 0.53%
Mechanical Assy 4.79% 0.12% 1.96%
Serialize 0.10% 1.60%
Die Attach 22.79% 1.35% 9.22%
Wire Bond 0.70% 8.57%
Open Face 5.32% 9.49%
Mod Test
Hermetic Seal 0.41% 0.41% 6.27%
Module Test 2.65% 5.99%
Environmental Test 0.04%
Other 5.68%
Rework
A411 7.21%
Ad412 3.88%
A413 0.00%
A431 0.03% 34.52%
A432 3.81%
A433 0%
Ad441 1.66%
Ad442 5.29%
A451
A452 0.15%
A453 1.49%
Total Cost (Qty. 208) 34% 12% 54% 100% 7% 0% 51% 58%

Figure 4-4. Program 1 Cost Comparison Between Charges Accumulated by Activity and Those
from a Traditional Ledger System. (Numbers are percentages of total module cost.)
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CALCULATED | /E WORKSHEETS| I/E WORKSHEETS
ABM COST (TOBUILD | (TO BUILD 208 (TO BUILD 208
LABOR | 208 MODULES @ MODULES @ MODULES
ESTIMATES 10/SHIFT) 60/SHIFT) @1/SHIFT)
ADHESIVE SOLDER 4.89% 10.01% 0.31% 12.78%
SURFACE MT ASSY
MECHANICAL ASSEMBLY 1.96% 1.60% 0.06% 2.13%
SERIALIZE 1.60% 6.01% 0.17% 7.30%
DIE ATTACH 9.22% 4.25% 0.28% 5.32%
WIRE BOND 8.57% 3.40% 0.28% 4.26%
OPEN FACE MOD TEST 9.49% 7.01% 0.14% 8.76%
HERMETIC SEAL 6.27% 1.46% 0.06% 1.83%
MODULE TEST 5.99% 7.20% 0.15% 9.00%
ENVIRONMENTAL TEST
OTHER 5.68%

Figure 4-5. ABM Data Can Be Used to Determine If a Process Is Proceeding as Expected. For
this figure, we have made some assumptions about number of hours, hourly rates, etc., which may
not be valid. However, they illustrate the capability of ABM data to indicate the presence, or
absence, of problems. (Numbers are percentages of total module cost.)

By making the connection between the above information and the PCT, we can also
see whether the results match with those that were expected. Figure 4-5 shows the
same labor

charges as Figure 4-4. However, now they are compared with the values that would
have been expected if we used only the Industrial Engineers standard labor times and
estimates. HE Microwave program managers may modify these standards if they know
a job has an element of risk or difficulty that might outweigh the simple standard. Most
of this information, along with expected program requirements (such as total number of
modules built, time frame to build them, etc.), is compiled when the program manager
estimates the cost of the job.

We have taken some of that information and applied it in Figure 4-5, columns 4 and
5. In column 4, we have calculated the time that would be necessary to build the
product based on the cycle time, setup time and yield from these sheets. For this
column, we assume that we process 60 parts per shift (we need this assumption to be
able to allocate machine setup times on a per module basis). Column 5 takes the same
type of information but assumes building a single part at a time. For both of these
cases, we divided the cycle or setup times by the yield in order to attach a “penalty.”
This simple calculation does not consider rework. Instead, the assumption is made that
if the setup or cycle times were equivalently longer, then the yield would be 100%.

The information in columns 4 and 5 was used to generate column 3, which has the
additional information that HEM built 208 modules in one month or approximately 10
modules/shift.  (This estimate was assumed to be acceptable since, in any
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manufacturing environment, one needs to know the work in progress and its status
before an accurate estimate of throughput for any one month can be determined.) By
fitting column 4 and 5 data to a quadratic curve and interpolating to the estimated 10
modules/shift, the cost values in column 3 were determined.

These three cases can be used to illustrate an important but very subtle application
of ABM. The data shows which processes cost the most. But, by comparing the ABM
data with the industrial engineering standards, it is easy to see which processes are
operating most “efficiently.” As an illustration, the ABM data shows that die attach
accounts for 9.22% of the total module cost. To build 10 parts/shift, it will account for
4.25% of the labor costs. The ratio of these two cost figures is 46%. If we go through the
same approach for the “serialize” process, we see that the ratio is 375%. This shows
that “serialize” is already operating much more efficiently than the learning curves would
have predicted, while die attach is still behind the expected behavior. As we follow this
procedure for all processes and compare that information for all cases, we can begin to
identify which processes are “on target” and which processes may actually be having
problems. If we had been able to collect more information from the process engineers
as to which tasks they are working on, we could understand more completely where the
problems were and what was being done to correct them.

Using the ABM data and correlating it with industrial engineering standards, or PCT
information about the impact of design choices, it is possible to identify which processes
and which designs are driving costs. This information can be presented to production
managers, program managers and/or the customer to get a resolution based on the
actual facts.

4.3 ABM Integration with IT Structure

A decision support system such as the combined ABM-PCT model is a form of expert
system, assisting in the decision-making process. The knowledge for such a system is
human knowledge modeled in such a way that the computer can deal with it. The
models used for this system included both off-the-shelf software and customized
applications. Excel was used to set up the spreadsheets to capture cycle time, yield
data, and the ABM interviews, timekeeping, and other cost driver data. The cost data
was then implemented into OROS, a powerful ABC modeling software package.
Process cost data from the ABM model would have then been fed into the Cost
Advantage model. This model would have been a truly customized system for a specific
set of users (design engineers). It requires great participation not only by design
engineers, but also process engineers, manufacturing engineers, industrial engineers
and accountants to make it work. The Cost Advantage software is flexible and can be
updated as needed for changes in the rules developed. The ultimate goal for this
system was to use it for routine analytical tasks (what materials to use for a “good”
design, etc.) and for problem solving (why did this design fail, why were costs higher on
the program as compared to another, etc.). Because much of the design of the system
is being done by the team itself, there will be little or no user-designer communication
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gaps. The collective expertise of many professionals has been coordinated through the
use of various personnel and different types of models all culminating in the database in
the Cost Advantage software.

44 Lessons Learned

The ABM work that was started on this program was aimed at producing quantitative
cost comparisons. Initially, these comparisons were to highlight the inadequacies of the
traditional cost systems and possible advantages of having an ABM system. The
expansion to include other programs and to track program maturity using ABM evolved
later in the program. The following list of observations is presented to highlight the
observations made from trying to get ABM implemented.

» ABM is a much more powerful cost tracking tool than traditional cost ledgers.
The discrepancies between time charges in traditional ledgers and the ABM
approach illustrate the fact that across the industry time charging is not always
fully understood or accurate. Tracking and controlling charges, in any system,
will be difficult until this can be rectified.

» ABM evaluations provide rough approximations of how time is spent. However,
those approximations change for individuals and for job classifications,
continuously. Therefore, even ABM leads to some cost distortions, although not
at the magnitude of the traditional system. ABC captures the daily reality of how
time is spent, which would give even more accuracy to product costs.

* Initially acquiring the necessary ABM information is difficult because it requires
a change in culture. The traditional systems cause the data to be stored within
departments and not by activity. Also, personnel are not used to being
accountable for detailed movement and their participation is often difficult to
obtain for this reason. Successful participation is dependent upon providing
them with user-friendly tracking systems, as well as their buy-in of the proposed
benefits. Although there are a number of philosophies on why to track costs
and a number of techniques on how to obtain the required information, ABC
and ABM require the most sophisticated and detailed accounting procedures.
For this reason, although the detailed information that is required to perform the
analysis that is possible with ABM can be made available, it is very difficult to
obtain—both philosophically and actually.

» ABM provides immediate insight into the overhead costs for the period, and
only those overhead costs directly applicable to the program are immediately
applied. The more traditional system currently in use applies overhead based
on a yearly estimate to all programs based on the direct labor base. At the end
of the year a reconciliation is done between the estimate and the actual rate for
the year, often resulting in additional billings or credits to the customer. The
activity approach applies overhead based on appropriate drivers to activities,
which are then applied to programs, also based on appropriate drivers.

73



» Using ABM to provide analysis/correlation between task charges and ROl could
lead to some valuable cost saving measures. We are focusing primarily on
“direct charges”: those that come from building the part and those that come
from activities, such as purchasing, that are related to the build. This
information will help us properly assess where cost control efforts should be
placed; e.g., if 70% of our costs are in material, what can be done during
purchasing to reduce these costs? As an example, maybe all we need to do is
to allocate 15% more time to material reduction activities to get the job done
properly in areas such as supplier development.

ABM combined with PCT addresses producibility issues. Do you immediately plan
for automation, or when a project is in startup do you start out with manual processes,
move to semi-automation for EDU or prototype phases, and then move to full
automation with the LRIP or full production phase? If we knew what the plan was to
transition from one phase to another, designers could pick processes and materials to
make the transition easier. Under much of today’s environment, products often undergo
major changes between phases, causing costs for such things as tooling, equipment,
and even materials to escalate. The use of the combined model would greatly enhance
the design to manufacture process.

HE Microwave is a dual-use facility manufacturing products for both military and
commercial applications on common production systems, using common accounting
systems as well. Currently the military reporting and testing requirements are far more
stringent than those used on the commercial programs. The capital and maintenance
costs associated with meeting these stringent requirements get spread over the entire
organization under the dual-use concept. The ABM/PCT tools could show the
government how their costs could be cut by showing areas where their reporting and
testing requirements are far more substantial than their commercial counterparts. For
HE Microwave, as well as all defense contractors looking to commercialize many of
their products, these cost savings would benefit all their customers under the dual-use
concept.
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5.0

TOOLSET (PCT)

5.1

Introduction

5.1.1 PCT Methodology Development

Detailed information about electronic and mechanical assembly processes was
collected as set forth in the Process Characterization Toolset (PCT) manuals produced
earlier in this program. The flowchart shown in Figure 5-1 identifies the steps of the
process characterization methodology. Although a tremendous amount of information
exists in the form of process instructions, process flow sheets, routing sheets and other
forms of process documentation, this information is not always available to the designer
when a product is being designed. The purpose of this task was to collect that
information and make it available to the designer using Cognition’s Cost Advantage

IMPLEMENTATION OF THE PROCESS CHARACTERIZATION

Analysis/Trade Studies & Control

Data Storage
(Ingress DBM)

1 I i I i
Perform Perform e Perform Product
—p - Functional{ 3| Functionall . || Synthesis Developmen
Analysis | | Verification | SYnthesis [ ™ yerification ePe opment
rocess
ID Key Trait Ke Establish Part and Improve Six-Sigma
> Cu§tomer )|  to meet Tra%;s Targetand || Product |- Product/Proces .
Requirements Requirement Tolerance Variation Design Design for
| r Manufacturability
Key Controlling Variability
\ Characteristics y Analysis | Results/Improvements
Detsh(:ibe Megrs‘zlxez:]ent (g:algﬁﬁy Reduce Control
—> > » Variabilit
Process "| system " B aresty Pl‘tg:ess —> Proce.s S
Characterization
A
Step 1 Step 2 Step 3 Step 4 Step 5 Process
Improve Characterization
Flow the Collect and Retrieve Analyze Product/ Toolset
Process Store Data Data Data Process Design
Model Builder (W':i’:(ti?)\llzvrslflréL) Retrieve Data Statistical Analysis Commercial
(SilverRun) (GQL) (JMP)

Off-the-Shelf

Tools

(86-20-20) €61.1080-520

Figure 5-1. Flowchart for the Process Characterization Methodology and Toolset

software.

The flowchart shown in Figure 5-2 is a modification of the original methodology for

76



getting the information into the designer’'s hands. It shows the additional step necessary
to make the information available to the designer using Cognition’s Cost Advantage
software. For the JMD program, the process characterization information was gathered
from the HE Microwave factory in Tucson. During the actual build of a product in a
development program, additional process characterization data would have been
collected and compared with the initial input. This comparison would result in both a
refinement of the original process description and an accurate assessment of the origin
of costs associated with the product. The demonstration vehicle for this program was
the tile transmit/receive module being developed under the ARPA-funded HDMP
program. Because all of the PCT information collected on this program is proprietary to
HE Microwave, we cannot include it in this final report. However, we will show examples
of the databases and how the data was used.

This approach would have allowed us to characterize a “point” design of the HDMP
tile T/R module. Delays in production of the HDMP tile, however, allowed us to expand
the program. First, HE Microwave was willing to allow us to access other programs that
were in different stages of production. Even though we didn’t have the complete data for
any one design-to-production process, we had pieces of information that could be
patched together to form a “big picture” for manufacturing evolution from single, small

X

MODEL
BUILDER
(SILVER-
RUN)

(86-€2-%0) €611080-920 ]

PARAMETERS

A

STEP 2: ENTER
PARAMETERS,

STEP 1:
FLOW PROCESS,
IDENTIFY

COLLEC
DATA

(INGRES
DBMS)

DATA
ENTRY
(WINDOWSA4GL)

NAMES IN DB,
COLLECT DATA

STEP 3:
RETRIEVE
DATA

RETRIEVE
DATA
(caL)

STATISTICAL
ANALYSIS
(JMP)

EXPORT
FILES
(INGRES NET)

Figure 5-2. The Process Characterization Toolset. As we prepared to import information into Cost
Advantage, we realized the need for adding an additional “export files” step.
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scale prototypes to production volumes that could be seen typically for defense
manufacturing, or low volume commercial manufacturing. Figure 5-3 shows the different
programs investigated and some salient product features that we thought might make
the products “equivalent” in their manufacturability (e.g., size, number and size of
components, etc.).

5.1.2 Demonstration of PCT Methodology

To demonstrate the utility of the process characterization methodology and toolset, the
end goal would be to have designers, using a software cost tool such as Cost
Advantage, show how they could influence design trades using information gained from
the process characterization methodology. Ideally, we would be able to make this
comparison by having cost models built both with and without information from the
process characterization methodology. To accomplish this goal, we planned to use the
following three step approach. First, we would follow the methodology as illustrated in
Figure 5-1. Second, once the appropriate information had been collected and
organized, we would reorganize and reformat, as appropriate, to facilitate electronic
transfer (this new step is indicated in Figure 5-2). Finally, we would aid the designers in
building a cost model with sufficient detail to utilize the process characterization
information.

From the outset, an issue has been to define, with some clarity, the information that
is supplied via process characterization versus any and all other kinds of information
that designers or IPTs may have at their disposal. From the JMD program, we have
verified that the following information is generally made available to both production
personnel and designers:

* Process flows, route sheets and travelers — these show the steps, in varying
degrees of detail, that one goes through to assemble a particular product or
family of products.
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 Detailed process specifications/instructions — these will tell how to execute
a process. Generally, these instructions include how to set up machines,
perform inspections and tests etc. They may also include information about a
family of products. Each of the detailed process specifications refers to a step
in the process flow, route sheets or travelers.

* Industrial engineering standards — there are usually time studies to establish
how long it takes to do a certain function that is described in the detailed
process specifications above.

* Realization factors (RFs) — these are adjustments to the standards, above,
that account for inefficiency in the execution of process steps. Although they
are usually meant to apply to human issues such as sickness, training etc.,
they are frequently expanded to cover additional process steps (not shown on
the route sheets) or process inefficiencies such as rework, additional
inspections, etc.

» Design guidelines — these identify the preferred, or optimal, process variables
that, if adhered to, will minimize the time it takes to perform an operation.
Essentially, optimum use of the guidelines will result in minimum process costs
for each individual process step. Unfortunately, guidelines do not usually
incorporate state-of-the-art technology in products.

* Interviews, IPTs, etc. — these techniques allow us to gather informal
information from subject matter experts. This information is extremely useful
but is not always quantitative and is based on historical behaviors. It is
frequently the basis for brainstorming for new and innovative ideas.

» Accounting information — this includes labor grades, overhead rates,

HDMP Tile Array Program 1 Low Power Module §
Manufacturing Level EDU LRIP EDU §
Substrate Area (in?) 1.41 1.57 1.41 %
Number of Substrates 3 1 2 g
Number of Components 152 59 40
Number of Part Numbers 20 28 11
Smallest Component (ir?) 0.0007 0.0003 0.0027
Largest Component (ir?) 0.048 0.053 0.053
Number of Attachment Types 4 4 3

Figure 5-3. Product Features of Programs Investigated

equipment utilizations, etc. This is covered more thoroughly in the ABM report

(Section 4), but it does bear an important impact on process characterization
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since cost usually drives some process behaviors (e.g., increasing throughput
or decreasing inspection times), at the expense of yield.

Process characterization better supports design trades by tying together all of the
above information and making it available to IPTs. We noticed this important distinction
as we began populating the Cost Advantage models. The original cost models basically
followed the process flows, or route sheets; options were not allowed. Also, as we
prepared the information to be exported, it became apparent that although we had some
information for each process, we didn’'t necessarily have the information that links one
process to another or that contains the conditional statements that result from the
process characterization methodology.

To illustrate this point, Figure 5-4 shows part of the table used to construct the
original input into Cost Advantage for the HDMP tile module assembly model. The
example data in the table applies to the face-up chip placement process. By
comparison, Figure 5-5 describes the same process step, but contains the conditional
statements for variations in process inputs/outputs and for variations in volume, learning
curve, etc. The initial attempts at the “addition rules,” which are used to describe how
one step in the process may relate to other steps in the sequence, are contained in a
separate spreadsheet (not shown for proprietary reasons). The two figures and the
spreadsheet represent the main difference between all other collections of
manufacturing information and the process characterization methodology verified within
the JMD program.
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Independent process data

Total |Mach. Mach. |Total |Oper. Oper.
Fix. |Mach |Cycle cost |Oper. |Cycle cost |Tooling
Oper |Operation Sub. per per |Cycle [Time [Mach. |per Cycle |Time |Oper. |per |cost per
Num |Description Machine Fixture Batch |Time |per sub|Rate |sub Time |per sub |Rate |sub |oper.
10| StencilFlip
20|StencilDiscrete
50]|ReflowSolder
60| FluxRemoval
90|EpoxyCure
100]|PlasmaClean
120]Test
120c|ReworkTest

Dependent process data

Mach |Oper. Oper.
Mach. cost |CT cost Tooling
Oper |Operation Item of CT per |Mach. |per per |Oper. |[per cost per
Num __|Description Machine dependency item Rate |item [item |rate item oper.
30|PlaceDiscrete
40|PlaceFlip
45|PreReflowInsp
55| PostReflowlnsp
70]|EpoxyDisp
80| PlaceFaceUp Hughes 3500 # of faceup 180.0{X 0.05X 7.5|Y 0.17Y Z
110{WireBond
120a| Troubleshoot
120bJRework

Figure 5-4 HEM Original Process Steps, Time Estimates, Yields, Etc., Were the Basis for the
Cost Advantage Tile Assembly Model. The spreadsheet shown here is an excerpt of HEM original
estimates and was used as an actual table in the cost model.

Process Data
Op Num | Operation Description Machine Deg::di;cy ftem of i:ﬁ:ndency deperltdee?coyfva\ue Sub/ Fix| Fix/ Batch M.?.gTafT M::cnr:é: T Ma;:;: T M;ZT;e Madgr:zcost/ O;;):{gT OE:; T Oper CT/ sub
80 PlaceFaceUp Hughes 3500 die area mm2 16 1 1 15 sec 180 X 0.05X 30 sec 30
25 12 sec 144 20 sec
36 10 sec 120 17 sec
die thickness mm 0.5 1 1 15 sec 180 X 0.05X 30 sec 30
1 10 sec 120 20 sec
2 10 sec 120 17 sec
die pitch mils 16 1 1 50 sec 600 X 17X 30 sec 30
20 25 sec 300 20 sec
25 15 sec 180 17 sec
Independent Process Data (Continued)
ot Ot | M|l ot || ot gt | Mo | gy | 0 | P
80 PlaceFaceUp Hughes 3500 die area mm2 16 Y .008Y 4 $ 180 min A % A % of MST
25 0 $ 100 min B % B % of MST
36 0 $ 80 min C % C % of MST
die thickness mm 0.5 Y .008Y 4 $ 180 min D % D % of MST
1 0 $ 100 min E % E % of MST
2 0 $ 80 min F % F % of MST
die pitch mils 16 Y .008Y z $ 180 min G % G % of MST
20 0.5 $ 100 min H % H % of MST
25 0 $ 80 min | % | % of MST

Figure 5-5. PCT Methodology Adds Conditional Statements to Account for Product Variations

The demonstration medium, then, is the distinction between normal process
bookkeeping and the models that one could extract from process characterization
information.

5.2 Toolset Review

The process characterization toolset shown in Figure 5-1 will allow the user to collect
and refine information about manufacturing processes as they evolve
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and develop. On the JMD program, we discovered the need to perform at least two
other additional tasks (described below) and a need to consider the time element or
revision version. These tasks do not expose any inadequacies in the original
methodology but, rather, highlight the additional sophistication necessary in order to be
able to take advantage of the information in an IPT environment.

The first task required is to communicate the information electronically by exporting
into it into a CORBA-compliant environment (this will be discussed in the PCT/IT
integration section). This requirement results in the modification seen in Figure 5-2 and
will probably have to be tailored for each user and each application of the system, since
satisfying the requirements depends on the entire system and its interfaces. In order to
have data bases talk to each other electronically, interfaces have to be established for
either the automatic transfer of data (e.g., on a daily or weekly basis) or the event-driven
transfer of data (e.g., change in process, personnel, etc.). As the figure shows, this
requires additional software in the toolset.

Second, this same information needs to be imported into a cost tool such as the
Cognition Cost Advantage Modeler. The need develops in response to the difference in
sophistication between the process characterization output and the ability of the model
builder to handle very sophisticated information. Figure 5-6 shows a sample table that
has been derived from Figure 5-5. This table has been set up to allow the information
from process characterization to be imported into the model builder by taking discrete
values for specific instances of a manufacturing process. In a sophisticated
environment, a single equation, typical of what would be seen in “electronic
prototyping,” would describe all of these instances (and others). The task of importing
this information into a model builder remains to be completed.

The time element relates to updating information in the model builder and warning
the user that the version number of the information has changed. The act of updating
the process characterization database needs to trigger all of the successive software
downstream that depends on this information. Simple changes, such as a refinement in
derived values, can be transmitted as a result of the revision number. More
sophisticated changes, such as a new or changed process, may need to impact the
entire model building process.

5.3 Implementation of PCT Methodology at HE Microwave

5.3.1 Programs

Originally, we were going to collect the process information described above only on the
tile T/R module for the HDMP program. As discussed, we wanted to maximize our
opportunity to perform design tradeoffs based on possible alternatives in the processes
used to construct the HDMP tile or other similar products. HEM provided us with the
opportunity to collect additional
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Process Name | Process Variable Cost Variable Value 1 Value 2 Value 3
place die die area machine CT 1 2 3
mm2 seconds 180 144 120
place die die area Operator CT 1 2 3
mm2 seconds 30 20 17
place die die area tooling cost 1 2 3
mm2 $ X 0 0
place die die area machine setup time 1 2 3
mm2 minutes 180 100 80
place die die area yield 1 2 3
mm2 % A B C
place die die area process Eng Support 1 2 3
mm2 % A B C
place die die thickness machine CT 1 2 3
mm seconds 180 120 120
place die die thickness Operator CT 1 2 3
mm seconds 30 20 17
place die die thickness tooling cost 1 2 3
mm $ X 0 0
place die die thickness machine setup time 1 2 3
mm minutes 180 100 80
place die die thickness yield 1 2 3
mm % A B C
place die die thickness process Eng Support 1 2 3
mm % A B C
place die die pitch machine CT 1 2 3
mils seconds 180 120 120
place die die pitch Operator CT 1 2 3
mils seconds 30 20 17
place die die pitch tooling cost 1 2 3
mils $ X 50 0
place die die pitch machine setup time 1 2 3
mils minutes 180 100 80
place die die pitch yield 1 2 3
mils % A B C
place die die pitch process Eng Support 1 2 3
mils % A B C

Figure 5-6. This Table Was Used to Demonstrate How to Take Data Out of the PCT and Put It

in a Form That Could Be Used by Cognition’s Cost Advantage Tool. This table contains the
same data as in Figure 5-5. However, this table (Figure 5-6) was generated from the Ingres
database using a simple scripting language.
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information on other programs that their manufacturing personnel were producing.
These programs and salient features about the products have been laid out in Figure 5-
3. The variations in these products allowed us to define the “normal” production in the
HEM factory and we had the opportunity to perform a more complete process
characterization.

In addition to variations in features, each of these products were in different stages
of producibility. Although the product features appeared to have a number of similarities
and the parts lists for these products contained a number of similar parts, the cycle time,
touch labor time, yield and process development had noticeable variations. Presumably,
this could be attributed to variations in the product maturity. The short description that
follows is included to provide background on what we intended to accomplish.

« HDMP - original program for process characterization. This product
represented a radical new approach to T/R module design and promised to be
the best candidate for the JSF radar. The product maturity most closely
matched the JMD program schedule.

* Program 1 — this product was just entering LRIP as this JMD task started and it
represented more of a “classical approach” to T/R module design, which would
be a good benchmark to determine how much the HDMP design saved in
assembly.

* Low Power Module — a design similar to HDMP but made for a lower power
product that had different specifications, cost targets and producibility
requirements.

Because each of these programs had different producibility requirements, it was
hoped that the additional information would have helped refine the process
characterization methodology. The personnel at HEM each shared responsibility for
more than one product. As a result, it was easy to get them to compare different
learning curves and producibility issues for each product. This additional, unique
information would have helped us identify how process information gets developed and
communicated for innovative manufacturing processes as well as mature processes.

5.3.2 Application of PCT

The process flows, time estimates, yields etc. from the original HEM bid on the HDMP
project were used to construct a process flow diagram in the SilverRun tool. Using the
information seen in Figure 5-4, it was possible to construct a process flow diagram with
the necessary detail as a starting point for the process characterization and as a guide
to obtain additional information from the process engineers.

The additional information was obtained by conducting interviews with a
representation of process engineers from each major process used in the construction
of the tile. This information was collected during conversations where the process
engineers were encouraged to discuss features that contributed to a “good” or “bad”
design, examples of process variables that were important to their particular process,
and where they saw additional work that might contribute to improvements in the
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processes they managed.

The process engineers then edited a written version of the interview and made
additional comments, as necessary. The information exchange was directed at the
HDMP product in particular and/or examples of other products that were similar to the
HDMP tile. Emphasis was placed on process variations that were robust as well as
those that could lead to problems. This same information became the basis for an
updated set of design guidelines that were made available to the design engineer. As
stated earlier, the design guidelines offered “preferred” values of features in the
processes. This information was incorporated in the PCT as the baseline for process
attributes such as cycle time, yield, setup time etc.

At this stage we had enough information to simulate process runs in the Ingres
database. Since no tiles were being built at this time, these simulations allowed us to
enter process data in the data base, as we would expect to take it during the HDMP
build and to extract it from the database for analysis. In an environment where parts
were being built, we would have used the data to refine the estimates made by the
industrial and process engineers. We followed up by extracting the data with GQL and
importing it into JMP for statistical analysis. From our mock data set, we were able to
produce a series of analyses. One example is shown in Figure 5-7.

The entire series was compiled into the single surface shown in Figure 5-8, which
we would ultimately export as an equation into the Cost Advantage Model Builder. The
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Figure 5-7. Curve of Simulated Data Extracted From Database to Show Relationship of Machine
Cycle Time to Die Area. This simulation was for a low volume of parts that would be placed manually.
Data shown is for explanatory purposes only.

machine cycle time vs. die size simulation was expanded to include variations in the
operation that could go from small experimental runs to large volume runs.
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Figure 5-8. The Die Size/Cycle Time Process Spectrum. Data shown is for explanatory purposes only.

This representation shows that there may be tradeoffs between part size and production
volume. It is suggested that other representations would exist for labor grade and touch
labor time, part cost, machine cycle time, machine setup time, yield, process
development time, (unscheduled) inspection/rework and tooling.

We began to explore and add other programs (that had already been compared and
contrasted to HDMP during the interviewing process) to our process flows. This
additional information allowed us to change our processes and process flows so that we
could include more opportunities for design trades. For the JMD program, we switched
from using SilverRun to using Excel spreadsheets to store the information. This was
done because HEM did not have a copy of SilverRun that they could run on a PC. The
flexibility that we gained from using Excel was traded off against the ability to link
subordinate processes together. This tradeoff will be discussed in the lessons learned.

The detailed process information began to open up areas of investigation that
involved cost. For example, when does it become more useful to use an expensive
machine versus a cheaper, though less efficient machine? Answering these types of
questions required the assistance of the accountants and finance personnel that helped
produce the ABM report (Section 4) in order to address labor costs, machine utilization,
and yield issues more fully. In Figure 4-4 of the ABM report, one can readily see that for
most processes, labor costs far outweigh machine utilization costs (especially in low
volume builds), and even parts costs. When we combine the detailed information that
can be supplied by process characterization with the elements of the process costs
supplied by ABM, it is easier to make data- driven decisions.
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We collected actual production data from the factory floor. The process
characterization methodology creates a structured environment for collecting and
analyzing data. The strength of the methodology lies in its ability to identify correlations
between production information and design requirements. Once the qualitative
information is used to make these correlations, the data base can then be used to
continuously collect and update data as the production process evolves and matures.

The information from all of the sources was compiled in table form. The resulting
table consisted of rows that mapped directly into the rows of processes shown in Figure
5-4. (The same major processes, along with the associated costs, are shown in Figure
4-4 of the ABM report.) However, each process in Figure 5-4 contained up to 15
additional rows of process information and associated cost variables (labor, machine
set-up, tooling etc.) based on how variables in features might cause/impact process
changes. Due to its proprietary nature, we cannot include the table in this report.
However, the columns in the table were set up to define the following attributes:

» Feature — This term was used to link the processes that process engineers
were familiar with to hardware that a design engineer would generate. The sole
function of the term is to help organize all the information into a common
language.

» Feature variable — This describes an attribute of a feature that might be of
concern to either the design or process engineer. Feature variables usually
refer to a measurable attribute of the part, such as size, or a measurable
attribute of the process such as receiving packaging.

* (Resultant) process — The process used to assemble the feature that has just
been described is named in this column.

» Process variables — Important attributes of a process, such as temperature,
are included in this column. Sometimes the process attributes, such as part
size, are also feature variables. The inability to characterize feature variables in
terms of process variables causes most of the problems while characterizing
processes.

+ “Engineering” cost rules — In an attempt to relate to design guidelines, this
column contains information to aid the designer in minimizing feature costs by
explaining what must be done.

* Engineering variables — Tradeoffs that the designer could make, such as size
vs. packing density information, are contained in this column. The information is
not meant to be all-inclusive, but rather to give the designer a hint from the
process engineers of what directions might be most cost-effective.

» Estimated cost for process (from baseline) — Process engineers can aid the
designer in minimizing costs by optimizing the feature, process, and
engineering variables. These last three columns contain input from the process
engineers that can help maintain cost targets.
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* Process cost — The next three columns contain the information for estimating
costs based on number of parts. These three columns contain the crucial
information that is exported out of the PCT into a cost estimating tool such as
Cognition’s Cost Advantage.

* Process rationale — Information included here simply defines what process
attributes are driving the cost estimates established in the previous columns.
The information contained in this column contains suggestions for process
improvements, design changes or capital expenditures.

* Rule addition rules — If more than one feature variable impacts a process
cost, it is necessary to identify how the variables add together. For the JMD
program, this information was collected as part of the process characterization,
but not linked to all the other processes. Not linking with other processes
allowed us to use Excel, a simpler tool than SilverRun.

The next step was to get the information from the process cost columns and the rule
addition column into Cognition’s model builder. The additional information that was
collected would find a place in the model builder as notes that would be used to aid the
designer in finding a more cost-competitive solution during the design. This will be
addressed in Section 5.4.

5.3.3 PCT Influence

As we collected the process information for HDMP, a number of “opportunities” became
immediately apparent, especially since we contrasted the HDMP information with similar
processes on other programs. Because a number of observations from the PCT were
already being considered by the HDMP designers, it was apparent that we were on the
verge of being able to impact the overall cost of the product. At the very least, the
information contained in the PCT could be contrasted with the available information that
the designer used to make the original design tradeoffs.

Collating all the information in the PCT has allowed us to produce an extensive table
of information that HEM will use to augment its own design guidelines. The design
guidelines which used to simply state the “preferred” approach can now be embellished
to identify cost penalties for deviation from the preferred approach. Further, the
relationship between the variation in costs and a specific variable, such as die size, can
now be quantified. The extreme detail that is captured in the PCT goes beyond even
detailed process instructions. In its current state, the PCT product contains enough
information to compromise HEM’s competitive position if the information were to be
released in this report. However, it is important to note that the information will be used
on the JSF active array program.

For this reason, the following example of PCT’s thoroughness in establishing the
cost impact of design trades is presented in lieu of the actual data collected during this
program. This example also refers to information in the ABM report to help emphasize
the impact of the combination of these two tools.

Die that are placed on a substrate come in a variety of sizes. For the

88



programs we investigated, some of this information is contained in Table 5-1. At the
extreme small size, the die tax the capabilities at the lower limit of the die placement
machines. In Figure 4-4 of the ABM report, we can see the allocation of costs based on
labor, parts, and equipment utilization. From that figure, it is easy to see that die
placement is one of the more expensive operations and it is much more expensive than
was originally estimated.

From the PCT, we can analyze the reasons for the costs and actually suggest a
number of alternatives to reduce cost. First, “programming” the die placement machine
is @ much more sensitive task and requires either a lot of time for a beginning process
engineer or may require the services of a more senior person. This can create a large
cost for small volume runs. Second, while trying to recognize and identify the part to be
placed, the machine will have a very high false reject rate for parts that tax the size limit
of the machine. This will result in having a production operator maintain a constant
watch on the machine to manually override the machine’s errors. Also, an additional
operator will be necessary to inspect and possibly rework each and every substrate
before it is passed on to the next cell. Third, especially for small and or thin substrates
that may be placed too close to their neighbors or in epoxy that is too thick, another set
of problems can present itself, which will result in additional delays in manufacture,
additional inspection steps and additional rework. For at least one set of these
conditions, the rework necessity may not be noticed for an additional two steps in
production. Each of these steps is value added for the product and increases the cost if
the product is scrapped.

In the above example, Program 1 is using the smallest part of all three programs. If
the above conditions existed in Program 1, the solution might be to go to a larger part
with equivalent operability for that die. HDMP uses the largest number of parts on its
substrates. For that program, dense packing of the die might be the cost driver. The low
power module design seems to have the fewest problems (as far as this example is
concerned). In all cases, it appears that the best choice is to use the very best
machines that can handle the smallest die and place them in the shortest cycle time,
since the machine cost is small compared to the labor costs. As a result of this study,
the design guidelines now capture this quantitative PCT information and ABM data that
shows the tradeoff between part, equipment and labor costs. Originally, the guidelines
were limited to preferred part sizes.

The PCT data that was collected helped to underscore where additional impacts
could be observed. In the previous example, the distance between two die can be a
critical parameter. Some of that can be addressed by the designer or in the
manufacturing process. However, some of the problem may exist because the die are
not accurately cut to their specified dimension. The problem of how the output of one
process can effect a “downstream” process still needs to be addressed. The “rule
addition rules” in the PCT begin to make some of the necessary correlations. However,
for the most part, individual process owners did not have enough quantitative
information to be helpful. Continuing to collect process details as discussed above will
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help future processes not only as they approach “six-sigma,” but how the entire process
flow can minimize variation and the attendant costs associated with that variation.

5.4 PCTI/IT Integration

Integration of the PCT information with the IT aspects of the JMD program focused on
the need to export the information from PCT’s Ingres data base in a fashion that would
be specific enough to capture the very detailed information in the data base, but general
enough so that a structure could be specified that would allow the information to be
routed through the CORBA-compliant system. A second aspect of this task was to be
able to make the information readily available to the users of Cognition’s Cost
Advantage software. The communication between these software packages was
demonstrated in the program. In the following text, the explanation of the approach and
the results are highlighted by specific tasks that needed to be accomplished.

» Create an exportable table in the Ingres data base — To accomplish this, a
sampling of rules and equations was taken from the HEM process
characterization along with the relevant variables associated with those rules
and equations. This information was used to construct a table, as shown in
Figure 5-6. The rows of the table consisted of the various processes and the
related information used in the HDMP build. The columns consisted of the
variables, the cost elements (this will link the PCT database to the ABM cost
elements), and the cost factors (such as number of parts, tooling, etc.). The
current table mimics the table used in the cost tradeoff during the mini-demo.
except that it has considerably more detail and many more options/alternatives
for cost tradeoffs. The table design is generic so that more data elements can
be added as they are identified and the table can be used to support the
additional processes defined for the entire tile array.

Two forms of the table were considered. The simple table just described uses
discrete values from the data base and was used to demonstrate the utility of
the entire PCT, VDA, and the Cognition Cost Advantage system in the JMD
program.

A more sophisticated version of the information would include calculations and,
ultimately, equations that modeled the process. For these more sophisticated
analyses, such as the relationships between number of parts and cycle time
per part, as shown in Figure 5-8, an additional step must be added. This step
requires issuing a query to the data base in order to retrieve data for a
statistical analysis (this will be accomplished using the JMP software). The
results of the analysis can then be entered into a specific table in the Ingres
data base.

+ Establish the mechanism for how this table is going to be moved through
the system — When finished, the table was then exportable to Cognition
through a single call from the VDA. The VDA queried the PCT database for all
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the required fields in the specific tables and created a file to store the data. In
order to perform this querying task, in the easiest case, both of the computers
involved must have Ingres DBMS and Ingres Net. More advanced versions of
this task would allow different databases to communicate by using additional
software, commonly called “middleware” and referred to as “gateways” that go
(unidirectionally) from one specific database to another specific database. This
will allow the querying machine to send SQL commands in a form that the
receiving machine will understand. The data file is created on the receiving
machine, where it is manipulated to comply with the format that Cognition
requires. The format of this file was determined by the method necessary for
importing it into Cognition. Each record extracted from Ingres needs to be
transformed into two rows, one to carry the value of the cost variable and the
other row to carry the value of the process variable. This can be done by any
scripting language.

The transfer from the PCT backend server to the client was successfully tested
using the new CORBA VDA before the program ended. This simple test
allowed us to verify that the necessary data from the PCT could be transferred
electronically and prepared for incorporation in the Cognition software.

Verify that the table could be imported into the Cognition Cost Advantage
software for the cost analysis — Simple updates to an existing cost model,
such as refinement of the error bars on existing values, can be imported into
Cost Advantage by simply replacing an existing table with a new revision. The
table that was used to demonstrate the system was modeled specifically so
that it could be used as a replacement for the existing table in Cognition.
However, even this simple example highlights the problems involved in
handling more sophisticated updates. This simple table caused modifications to
the existing model because it allowed for more alternatives than the current
model embraced. As a further example, during this program the entire HE
Microwave factory changed location. This change, which HE Microwave used
to refine their process flows, resulted in improvements in their process and flow
and new rationale for some cost variations. Flagging this change and modifying
the cost models to reflect the new rationale is a major concern (especially if no
one is notified of a significant process change). This gets back to the serious
question of process ownership vs. model ownership, discussed in the Lessons
Learned section (Section 5.5).

Establish a criteria for when this table was going to be made available to
the system and whether a “push” or “pull” system would be used — This
issue was about to be addressed by the program teams. How to update data,
make distinctions between revisions, and keep the models current is a task that
needs to be considered in light of continuously evolving processing
technologies and product technologies.
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5.5 Lessons Learned

Our experiences on the JMD program have shown that the process characterization
methodology, as an information/data gathering tool, works as we had described in the
original drafts of the PCT manuals. We have applied the methodology to electronic
assembly products at HEM and, to a limited extent, at one of the mechanical fabrication
facilities at Raytheon. Although the detailed data gathering necessary to support the
PCT concept can be a daunting task, the JMD program accomplished its original goals
by collecting and storing more process information in one location than had previously
been done at HEM or at the mechanical fabrication facility. The success of this task
underscores the need for additional information to help “fill in the blanks” as well as a
new type of information to help link “upstream outputs” to “downstream inputs.” This
information, which can be obtained only from a diminishing number of experts, will be
crucial to cost reductions in high technology systems.

Experience gained on this program has produced the following suggestions for
improvements that need to be incorporated into future versions of the methodology:

» The process characterization methodology can be of tremendous benefit to the
designer and the manufacturing personnel. Unfortunately, the good
designers/manufacturing engineers are usually too busy to document their
design trades and process improvements. These people need to better
understand the potential savings and/or improvements PCT methodology can
make in their jobs so that they become motivated to document this information.
Tools must be made available to them to capture the information as it is
produced.

* In the designer’s environment, work starts at a concept level that does not
require a lot of detail and/or a lot of accuracy in the information. This means
that process characterization can start at a high level. An important addition to
the process characterization methodology in conjunction with the Cognition
Model Builder is that worthwhile models for concept, preliminary, final, and
critical design levels might be constructed from the “rolled up” details of each
successively more detailed model. The flow diagrams and the data base in
process characterization can already support this approach, since the data is
collected at the most detailed level. Establishing a hierarchical relationship
would be relatively simple.

 Designers, manufacturing engineers, industrial engineers and accountants all
have different pieces of information that may not be simply appended to each
other; e.g., the “designed” part may be different from the part used in
manufacturing due to unavailability at the time of manufacture. The complete
trail of cost, technical description and part number need to be pieced together
in order to collect accurate cost information. The process characterization
methodology provides what can amount to a single repository for all of this
data. However, this immediately gets into questions of model ownership. It
seems obvious that the manufacturing personnel need to control,
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update and modify the models to reflect changes in the manufacturing process.
However, the designers are the ones that need

to use these models in the design environment. It would make sense for
manufacturing to own and configuration control the PCT models used in the
design/cost environment. These models should not be changeable by anybody
outside of the controlling manufacturing organization.

We found that flow charts, route sheets, |E standards, process instructions,
etc., do not contain all the necessary information. Too many assumptions are
buried in the data they contain. For example, |IE standards assume a well-
behaved process that can be repeated reliably. RFs do not contain the
necessary detail to identify why the RFs vary. And, for the designer, none of the
information is pieced together to help identify which standards need to be
linked to define a single process.

One problem we found was that designers, production personnel and
accounting personnel all speak very different languages and have different 10s
that need to be translated before the information can be assembled. To avoid
confusion, we need to standardize on terminology between disciplines.

Cost is a complex variable usually composed of dozens of elements. However,
when characterizing manufacturing processes and assigning cost attributes, we
were able to reduce the number of variables to the six described below:

. Process development time/efforts — Startup and new processes need to be
“‘debugged.” The more exacting the design specifications, the more time that is
spent at this stage of the process. Usually Process Engineering is an activity
seen at the beginning of production. However, changes in machinery,
personnel, material, etc., may force this activity to show up at any time during
production.

. Unscheduled inspection — Like process development, this cost usually occurs
at the beginning of a process/program. However, changes in suppliers, material
etc. may cause an additional employee to be assigned to a given process in
order to inspect and/or repair any defects before the product gets to the next
process.

. Tooling — Tooling costs are generally accepted as being a process cost. The
PCT has identified potential tradeoffs between tooling (for automated and large
volume production) and manual labor.

. Machine setup/programming time and yield — The costs associated with
setting up a machine or station depend on the demands at that station. If the
station is operating well within the spec limits, the costs are minimal. If it is
operating near an extreme, the costs can become unacceptably high. This
usually manifests itself as process yield. However, the distinction should be
made between yield (the results) and setup time (the investment to get
improved results).
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5. Machine cycle time — Costs associated with machine cycle time are usually
accepted as standards; e.g., 15 seconds/part. However, by counting the total
cycle time, it has
been noted that other functions, such as manual intervention, may drive the
average cycle time to higher numbers. This may be a function of either the
design, or problems with the process and the equipment.

6. Operator cycle time — Same as the previous costs item except that it applies
to the operator.

* In some areas, we have learned that manufacturing personnel are still reluctant
to provide any of their information to the design community. The information
has been used as a weapon against manufacturing in the past and has caused
the current culture. The need for major cultural changes in this area remains.

» PCT information is far more detailed and useful than what is usually supplied in
simulations because it contains all the variations that can be quantitatively
described in a process. The methodology is a crucial first step for electronic
prototyping, but needs to be linked with more advanced software and
methodologies. Since electronic prototyping is becoming more common, the
expert system could also serve as the basis of an entire electronic model of the
process. Process modeling would be more transferable between programs and
factories. By establishing minimal baseline data for individual factories, it would
be possible to adjust the model for a number of operational scenarios. The
development of an expert system of an electronic model based on the
information gathered in process characterization studies would be a
tremendous aid to providing the designer with a full range of design choices.

» Focusing the PCT on design applications raises the need to translate from the
production environment to the design environment by adding artificial
intelligence to the tool. For the most part, designers do not even have enough
information to submit a query to the tool, using GQL as we had originally
described. During the JMD program, engineering judgment was applied to the
manufacturing information to generate the cost rules that could have been the
basis for Cognition’s Model Builder. Using the information gathered by the tool
as a basis for an expert system seems to offer the most attractive alternatives
to providing the raw data alone.

* An expert system, even a rule-based system, would offer the ability to
interpolate in the areas where no data exists. Data may not exist because
production has never had to work in that area or because the data was simply
not collected. Because technologies migrate from research to production, it
would be extremely useful to start collecting information in an expert system in
the research stages of a technology development. In at least one case, we
were able to link a model that had been developed under a research project
with processes that were being used on the HEM production floor. Use of the
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PCT will help identify the overall usefulness of this model to both manufacturing
and design.

+ Although we recognize that some changes in the mechanics of how data is
moved within the PCT would be helpful, we have learned that while collecting
the information takes place as originally described, output of the PCT needs to
be tailored to the input of the next tool down the line (Cognition’s Cost
Advantage, in this case) and communication within an IT structure will put
some additional tailoring constraints on the tools.
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6.0 INFORMATION TECHNOLOGY ARCHITECTURE DESCRIPTION

6.1 Introduction

This section describes the information technology (IT) architecture for Raytheon’s JMD
Program.

The JMD IT architecture integrates the design, cost data and tools for demonstrating
the JMD methodology. It has a tiered approach compatible with Raytheon’s Product
Data Management (PDM) system. While the structure and functionality of the JMD IT
architecture were implemented within the framework of Raytheon’s PDM system, the
requirements and the generic architecture are suitable for application in a range of
modern PDM environments and suitable for all JSF team members. The intent of the
JMD methodology demonstrations was to show a solid foundation for the continued
development and productization of some validated concepts and requirements, rather
than to develop a total solution to the integration of the design, cost data and tools.

This section is a companion to the final version of the JMD IT Architecture document
updated to reflect two significant program events at the time of publication:

» The conversion of the initial implementation of the Virtual Database Agent
(VDA) to the COTS Ewdustry Common Object Request Broker Architecture
(CORBA) standards

» The operational status of the JMD IT prototype as of the date of this document

The desired capability in an integrated system is best characterized simply as
“providing the right people with the right information at the right time.” The migration
from a traditional serial workflow process to an IPPD environment, where all functional
areas work together in parallel, magnified the deficiencies in the pre-JMD development
tool set and data management environments. The traditional development tool sets at
Raytheon consisted largely of legacy applications developed in-house that used a
variety of partially integrated COTS applications. The once-adequate legacy systems
were created around the serial development processes of the past. They were designed
to serve the needs of specific functional areas first and the needs of related functions
only as an afterthought. COTS packages, while more robust, were generally intended to
support a limited set of users. Engineering CAD tools and other primarily UNIX-based
products have also been focused on narrowly defined user groups. The resulting
environment was poorly positioned to serve the data and information processing needs
of today’s interdisciplinary integrated product teams (IPTs).

At Raytheon, the pre-JMD IPPD information environment was characterized by:
» Multiple sources of data in functionally separate application systems

» Multiple application systems resident on multiple computing platforms using
multiple architectures, operating systems and databases

» Multiple formats for whatever common data that existed across functional areas

" Raytheon selected I-Kinetics Inc. of Burlington, MA as its supplier of object computing for the COBRA standard.
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Such an environment of diverse data sources and sometimes redundant and
overlapping tools led to unneeded complexity, marginal cost/benefit visibility and
extended tradeoff cycle times. In addition, the propagation of changes in data in
associated functional areas other than the originating functional area was rarely timely.
Lags in information availability were often reflected in extended development time and
increased product recurring cost. For example, many cost estimating tools used
purchased part and material costs as components in their cost models, but the linkage
between the source of the data (agreements in the materiel organization) and the user
of the data (the cost model being used by the design estimator) rarely existed. As a
result, an upward change in the market price of a raw material or commodity was not
reflected in the cost estimating model in time to adjust the product design. The cost
engineers discovered the change in market price only after an analysis of the budget
overrun.

Inherent in the definition of an integrated design/cost environment was the idea that
the timely exchange of information across traditional organizational boundaries had a
significantly beneficial impact on cost and cycle time reduction. This concept, depicted
in Figure 6-1, was fundamental to the implementation of an integrated Design to Cost
(DTC) environment.

Design and cost data needed to flow both across functional areas and within the IPT
product hierarchy. The application systems and tool sets supporting the IPT in DTC had
to respond to the IPT demand to provide the appropriate cross-functional data at the
appropriate time to all IPT members. The functional applications and their respective
data could no longer exist in isolation. The IPT environment demanded an application
environment that was seamless, integrated
and near-real-time in its responsiveness to Figg?ace
enable the needed information exchange.

Support for this seamless integration of
design and cost information was the
principal objective of the IT architecture
task.

Section 6.0 is divided into three parts.
Section 6.1 introduces the topic. Section 6.2
describes the tiered flowdown of
requirements from the top (a productized
system) to the bottom (the JMD
methodology demonstrations). In it, the top-
level requirements are discussed in relation
to Raytheon’s product development Figure 6-1. Design/Cost Data Integration
process, within which the integration of design, cost data and tools was required to take
place. Section 6.3 defines the tool set and describes the data needed by the IPTs to
effectively work the problem in real time. (This is a fundamental principle of the Lean
Aerospace Initiative.) Also covered are the topics of Mini and Full Demonstrations,
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Virtual Database Agents (VDAs) and lessons learned. The detailed specifications for
components of the IT Architecture are provided as Appendix A.

6.2 JMD IT Requirements

6.2.1 Top-Level Requirements for the Baseline IT Architecture

To assist JMD development and selection of architectural elements, the following four
top-level guiding baseline IT architectural features were developed to support the
migration of the methodologies into other JSF communities and to ensure a longer
useful application life:

1. The integrated system must minimize single points of failure and be fairly fault
tolerant.
2. Growth/add-on features for the integrated system should anticipate:
— Scalable client deployment (hundreds of users) beyond UNIX workstations
(i.e., PCs and Macs)
— Scalable and diverse distribution of servers for both processing and data
— Platform (server and client) independencies (rehostability)
— Background system readiness and fault isolation software
— Identification/control of system state (item versions and distribution of updates
to application S/W, databases, models, compatibility/integrity of versions, etc.,
as well as access privileges, security, etc.)

3. COTS implementation of middleware

4. COTS implementation of infrastructure software (communications, database
access/management)

6.2.2 IPPD Team Requirements

From Raytheon’s HDMP Tile Array program, some operational criteria were identified
for both the acceptability and success of the JMD IT architecture. A criteria checklist
focused on features for (1) sustaining a design trades and cost estimating environment
on a typical program, and (2) a roadmap for building/refining any productization
methodologies demonstrated or verified on the JMD program. These criteria were
developed in the early phases of the JMD program with key members of the module
design IPT and the JMD IPT and are summarized in the following text.

Figure 6-2 depicts several of the data types requiring integration via the JMD IT
architecture. This integration included:
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» The linkage and translation of common data shared between the Pro/Engineer
(Pro/E) and Cost Advantage (CA) tools. A discussion of the reasons for
choosing these tools was provided in the document “Information Technology
Architecture: Integrated Design and Cost Data and Tools (see Table 1-1).

Part and Manufacturing
Process sﬁﬁﬁgﬁﬁ; and Finance
Library Data Data
l |
Cost Design
Knowledge Knowledge
Base Base

L (86-0L-0) €611080-200 _|

Figure 6-2. Data Types
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* The means of automating the population of the CA-tool cost models with cost
data from sources other than Pro/E, such as Raytheon’s Cost Information
System (CIS), Raytheon’s tailored Product Information Manager (PIM), and
other data repositories as were deemed necessary in the development of cost
models that were continuously being refined to enhance the design/cost trade
space. (PIM is a component of the Raytheon Product Data Management (PDM)
system.)

Table 6-1 shows the data types

Table 6-1. Data Types and Storage Repositories

Data Type Storage Repository

addressed within the scope of the
JMD methodology demonstrations.

The implementation baseline
for the IT architecture was COTS

Product (design) data

PIM

Manufacturing process data

Ingres database

Existing cost models

UNIX directories/PIM/Excel
spreadsheets

CIS/Oracle database
Pro/E UNIX directories/PIM
CA UNIX directories/PIM

software and hardware whenever Component costs

possible. Due to the highly
dynamic state of development for
both intra- and Internet
communications, as well as the proliferation of “tools of choice” for both hardware
design and costing, the JMD IT architecture was required to be modular and
reconfigurable. The architecture outlined herein and the methodologies that were
subsequently demonstrated, especially the upgrade of the communications
infrastructure from Raytheon’s VDA to the industry standards (CORBA) for VDAs, were
clearly indicative that a “plug-and-play” environment was indeed achieved for several of
the design tools and databases.

The success of Raytheon’s JMD IT architecture was its ability to use a CAD tool for
design features linked to a cost tool that used ancillary hardware data extracted from
distributed databases in Raytheon’s PDM environment. Specifically, the Pro/E
mechanical CAD tool and the CA design advisor and cost estimating tool were
integrated to enable the sharing of data with cost models for building (fabricating and
assembling) the system hardware that was under detailed design scrutiny by the IPTs.
This was demonstrated using the HDMP T/R module and cost models developed to
estimate production costs (refer to Section 3.0) based on actual process data derived
from manufacturing process characterizations of Raytheon factories where the
hardware was actually being built.

Design models/drawings

Cost estimates

6.2.3 Requirements for Integrating Architectural Elements

The IPPD environment at Raytheon uses a common PDM tool set that consists of basic
categories of hardware and software for the applications/tools that support the five
following architectural features, each of which will be further discussed in detail:

1. Product Structure Information
2. Component, Material, Process and other libraries
3. IPT/Engineering Tools
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— Computer-Aided Design
— Cost Estimating (models)
— Process Characterization

4. Communications Infrastructure for the PDM Distributed Databases
5. User Interface

Product Structure Information. Product information at the Hughes Aircraft legacy
portion of Raytheon is managed by Sherpa Corporation’s Product Information
Management (PIM) software, which is functionally representative of commercially
available product information management systems common throughout the industry.
PIM provides the following primary functions:

* Manages product structure
 Provides work flow management capabilities
* Provides configuration management and vaulting capabilities

Component, Material, and Process Libraries. Component, Material and Process data
as well as other data libraries are maintained within Raytheon’s CIS software. This CIS
software is a commercially available product produced by Aspect and named “Explore,”
which provides the following primary functions:

+ Component, materials, and process library management
* Library search capability against user-specified criteria
* Linking of related information across libraries

IPT/Engineering Tools

CAD - Product design at Raytheon is supported by tools such as Pro/E (mechanical
design, assembly) and Mentor Graphics (electronic design). These tools reside and
execute on UNIX workstations.

Cost Estimating Tools — DTC product cost estimating uses both UNIX workstations
for Cognition’s Cost Advantage product and PC/Mac-based applications for software
such as Excel.

Table 6-2 summarizes Raytheon’s application environment as well as the supporting
hardware platforms and system/data management software. As can be seen from the
table, many of the COTS software products contain proprietary database management
systems that have made the interface/methods for database access unique to the JMD
IT communications infrastructure. However, the functionality of the JMD IT architecture
achieved by this methodology is applicable to and reusable with other systems and
databases.

Communications Infrastructure for the PDM Distributed Databases. The UNIX servers
and workstations that support the PDM tool set communicate over a 10 Mb/sec Ethernet
network using the TCP/IP network protocol. Figures 6-3 and 6-4 show the PIM and CIS
communications infrastructures, respectively.
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Table 6-2. PDM Ap

plication/Tool Summary

Application/ Operating
Tool Function Vendor Platform System
PIM V3.2.1 Product structure Sherpa Sparc 1000 Solaris 2.4
information
Explore (CIS) Component, material and | Aspect UNIX Solaris 2.4
process libraries workstation
Pro/E IPT tool: mechanical Parametric UNIX Solaris 2.4
CAD Technology | workstation
Corporation
Mentor Graphics IPT tool: electrical CAD Mentor UNIX Solaris 2.4
Graphics workstation
Cost Advantage IPT tool: cost estimating | Cognition UNIX Solaris 2.4
(knowledge base model) workstation
Excel V4.0 IPT tool: cost estimating | Microsoft PC/Mac Windows
(spreadsheet model) 3.1/Mac S7.X
Process IPT tool: process Raytheon IBM PC Windows 3.1
Characterization Tool characterization
TCP/IP Network Communications SUN UNIX Solaris 2.4
Protocol infrastructure workstations
and servers
PDM Graphical User User interface Black & UNIX Solaris 2.4
Interface White workstations
Software and servers
JMD Graphical User User interface IONA All platforms | All
Interface (JGUI)
CORBA Object Broker | IDL |-Kinetics, UNIX Solaris 2.4
Inc. Workstation
3
PIM Metadata Server & =
Client SS1000 PIM Vault —1 | &
Solaris 2.4 p| Sparc 10 HSM g
Ingres RDBMS Solaris 2.4 133 Gb 5
Sherpa PIM 3.1 &
Ethernet (Routed)
[ [ [
PC Mac
eXceed 4 Mac/X Wo?kg:;(tion
LAN/WP Mac/TCP

Figure 6-3. PIM Communications Infrastructure Map
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User Interface. The PDM

Graphical  User Inte.rfa}ce CIS Server & Client §
(PGUI) was the pre-existing RS PDM GUI CIS CD ROM ——— |2

SS1000 Solaris 2.4 Server 3
and the common access AspectCISV1.3 [P  Sparc 1 SDROM ||
method to the PDM Oracle Sun 0S 4.1.3 9 &
applications. This software RDBMS 7.0.1

provides a more user-friendly

means than the standard Ethernet (Routed)
UNIX command line method [ [ [
of starting the PDM PC Mac

; ; ; eXceed 4 Mac/X UNIX
applications and performing LAN/WP Mac/TCP Workstation
common tasks such as file

transfers and user logon
administration. ~ The  PGUI Figure 6-4. CIS Communications Infrastructure Map
interface exists as a floating

toolbar in an X-windows session. It contains buttons that will execute scripts that, in
turn, can perform virtually any preassigned task. Additional applications, tools and
functionality can be added as necessary to provide enhanced integrated capabilities
from a single user interface.

6.2.4 Specific Cost Tool Requirements

The foregoing end-user IPT requirements were translated into specific key requirements
for the JMD prototype development of the cost estimating methodology. This next level
of requirements determined two scope of work items:

1. Promote/host related or missing capabilities within an in-place suite of
applications/tools, such as those depicted in Table 6-2

2. Establish the communications and data highways between the various
applications/tools
These were used to create a systems integration roadmap for demonstrating the
cost-estimating methodology and providing lessons learned.

6.2.4.1 Cost Estimating — Prototype Requirements. Three candidate cost estimating
requirements were identified as critical in the migration from legacy estimating systems
into an integrated womb-to-tomb cost estimating system:

1. An integrated design/cost estimation capability consisting of a design model tool,
such as Pro/E, directly linked to a cost estimating tool, such as CA, to produce a
detailed cost estimate

2. A cost rollup capability (spreadsheet or equivalent) to develop cost estimates for
export into a placeholder in some next higher level of an IPL cost rollup, or to
originate directly a cost estimate for those product elements for which an
integrated design/cost estimation capability is not suitable, justified, or the
detailed design and cost models are simply not available (i.e., for items bought
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from or made by other vendors)

3. A “point estimate” for a particular component produced by a wide spectrum of
sources from a tool such as PRICE-M to that acquired from a supplier quotation.

By building a system using the above capabilities, cost estimates for complex
assemblies consisting of one, two, three, or even more levels of parts indenture will be
able to have a top-level cost estimate generated, while the cost estimates at the lower
levels are either maturing or new estimating models are in the process of being
developed. The mix of methods above allows pieces of legacy cost estimating systems
to be integrated with more powerful integrated systems, such as the initial integration of
the Pro/E and CA tool suite.

Integrated Design/Cost Estimation Requirements. The electrical or mechanical design
model tool must be feature-based and must have a feature definition library that can be
customized/tailored to reflect company/program standards that will be universal and
common to all users (engineering, manufacturing, etc.) of that design tool and that will
support a single universal interface. In this way, the subelements of the design (features
such as holes, edges, surfaces, cuts, fills, vias, trace widths, flatness, locations, etc.)
are consistently described and captured in a database that can be accessed by some
other external application such as the CA cost estimating tool.

There are similar requirements for the cost estimating tool. The detailed cost model
must account for the manufacturing processes used to produce the component or part,
which are ultimately a function of the component or part design features captured in the
electrical or mechanical design tool. Therefore the cost modeling tool must incorporate
all elements of the manufacturing process around the design features used to describe
the design.

With design features and rules for these design features as the common ground for
communicating between the design and cost estimating tools, the design and cost
models are more effectively linked for a real-time or non-real time exchange of the
design information that is required for the cost estimating model.

In addition, the amount of manual 1/O in this tool linkage can be minimized and even
eliminated depending on several important conditions: (1) the prearranged collaboration
on the design features and rules that are generated by one tool and consumed by the
other, and (2) the capability that each tool supplier (e.g., Pro/E and CA) provides for the
export/import of database components for the sharing between applications.

Because the cycle time for cost estimate updating was to be minimized, the following
requirements were deemed necessary:

1. A direct and automated link between the two applications

2. Collaborative mapping of design features from the one tool into the
manufacturing features of the cost model tool

3. Manufacturing process characterizations in the cost models that are themselves
functions of these design features
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It can be seen from this flowthrough that the entire cost estimating process appears
to be very feature dependent and that the success of an integrated system is very
dependent on there being a common set of coordinates.

A typical usage scenario for such an integrated system would be:
1. A design change in the design model
2. An export of the new features database with changes to an external database

3. Animport of this new features database into the cost model by the cost
estimating tool

4. A recalculation/update of the cost estimate by the cost model

5. Based on the impact the changes have had on the cost, a reiterative loop back to
step 1 until the design matures to the satisfaction of the IPT members

The preceding usage scenario was achievable on a variety of platforms, with the
biggest performance discriminator being the speed of computations and the cycle time
for a cost estimate update through recursion on steps 1 through 5. Only a UNIX-based
Sparc workstation was evaluated in the JMD methodology development.

Cost Rollup Tool Requirements. A cost rollup tool must allow the user to create a “cost
snapshot” of a product (or group of products) in accordance with an indentured parts
and processes breakdown. Each cost snapshot contains various subelement
configurations and alternatives, as well as variations of programmatic ground rules and
assumptions. The cost rollup tool should produce a cost estimate and a range of
uncertainty if possible. The cost estimates should be organized by cost element. The
unit production cost of parts and assemblies should be rolled up to the total product
level. Process characterization to the level needed to account for rework and scrap cost
should also be included.

Cost Throughput Requirements. This requirement is open-ended, and its inclusion
allows any external estimate to be inserted into an overall cost structure as a
placeholder so that a cost rollup is not held hostage for some less critical data that may
not require a more detailed or sophisticated cost model. These inputs might be
produced through analogy (to an earlier product), a Parametric model, an informal
supplier quotation, a design memorandum estimate, or a cost budget/bogey that may be
the goal of some other IPT.

6.2.4.2 Configuration Management of Cost Data Requirements. The fundamental
Configuration Management IT requirement is for a repository that stores five key items:

1. Afully indentured parts and processes list (IPPL) for each configured version or
release of a project

2. Cost estimate values for parts at all levels of the indenture
3. Databases consumed or generated by all models
4. The models themselves
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5. Design and cost snapshots of the models once they have been made design-
specific by user selections and tailoring of the cost models within the design
trade space that has been modeled

The repository will allow the user to:

* Load the top-level cost rollup tool — The cost rollup tool must be loaded at the
top (product) level from the repository with a specific version of the IPPL and its
associated design and cost estimate models. This step is the starting point for a
new project that is created as a modification to an existing project, or for a new
set of designs and cost estimates associated with an existing project version.

* File new or revised product structures — When a new drawing is created or an
existing drawing modified, the repository must accept the new or revised data
for storage and subsequent retrieval.

* File revised cost estimates — If a product IPPL is unchanged, but a revised cost
estimate is created, the repository must store the revised estimate with its
associated cost model details.

* Retrieve cost estimates — An existing cost estimate, with its associated design
and cost models, may be retrieved from the repository for review or re-
estimation.

» Annotate configurations — An existing product configuration may be annotated.
For example, a particular configuration or element of a configuration may be
marked as invalid. This may be necessary when it is discovered that the design
is not feasible to produce or the cost estimates were based on erroneous
assumptions.

6.3 JMD Implementation Methodology

6.3.1 Overview

The primary purpose of demonstrating the methodology was to prove merit and
feasibility, and then to refine and validate the final requirements for an integrated
Raytheon production system. Given this goal, it was determined that a complete
implementation of the above JMD prototype IT requirements into a totally new system
architecture was neither practical nor advisable at this phase of the program. The JMD
implementation methodology was guided by some fundamental precepts.

Two key facts determined that it was mandatory to remain synchronized with the
existing Raytheon environment to the maximum extent possible, for management buy-in
and acceptance:

1. An architecture/infrastructure (PDM) was already in place at the Hughes Aircraft
legacy portion of Raytheon with its many applications/tools of choice already well
established within that IT architecture as Raytheon’s company standards

2. Some of these applications/tools were also under evaluation for potential
upgrade or replacement by committees and groups reviewing company-wide
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requirements and utilizations

As was previously pointed out, the methodology is transferable to the entire JSF
community, although the interfaces to the proprietary databases made some of the
system “wiring” unique to the database interfaces. However, the functionality of the
system IT layers above these interfaces was made as tool independent as practical, or
at least anticipated the need for the additional work at some future time.

The other key implementation issue worthy of note was that the Raytheon
committees responsible for tool selection and infrastructure changes at the corporate
level became aware and sensitized to the new requirements from the JSF community.

Table 6-3 depicts the JMD prototype IT requirements of Section 6.2 alongside the in-
place applications/tools of Raytheon’s PDM environment from Table 6-2. Table 6-3
includes several tools/applications, such as CA and Explore, that were relatively new
additions to Raytheon for programs such as the HDMP and JSF.

With the adoption of the tool set of Table 6-3, the JMD IT Architecture had the
following implementation attributes:

» Changes to the in-place (Raytheon’s) standard network architecture were not
required

» Changes to the existing computing platform infrastructure architecture were not
required

» Modifications to the Sherpa PIM data structure were not required
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« All tools can run on the existing PC, UNIX workstations, or file servers, as
indicated earlier in Table 6-2.

To summarize the effort presented in earlier sections and to prepare for the
information to be presented on the VDA, Figure 6-5 is provided as a map to Raytheon’s
integration of people, processes, tools, and data. Due to the wide ranging and
overlapping nature of the JMD subject matter, topics have been covered in many
sections of this final report. Section references are provided in the upper right-hand
corner of each box to help the organization of the flow.

Table 6-3. JMD IT Prototype Requirements vs. PDM Tools

JMD Prototype IT Requirement PDM Application/Tool Rationale/Comments

Integrated Design/Cost * Pro/E — mechanical design » Company standard

Estimation System » Mentor Graphics — electrical design | « Company standard

» Cost Advantage (CA) * Knowledge base/rules capability
Cost Rollup Tool * HACOST » Company standard

» Cost Advantage (CA) » Excel-like capabilities with a

significant knowledge base capability

Point Estimate Tool * PRICE + Company legacy system
Configuration Management * Product Data Management (PDM) + Company standard
Cost Estimating Databases — Mfg | * PCT — Ingres » Company legacy system
Process Library
Cost Estimating Databases — * PCT - Ingres « Company legacy system
Machine & Assembly Cost
Factors
Cost Estimating Databases — * Product Data Management (PDM) » Company standard
Parts Costs Explore » Candidate as a Raytheon standard
Cost Estimating Databases — » Raytheon Proprietary — Oracle + Company standard
Programmatics
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| Section 6.2/6.3 | Section 3.3/6.3.2 | Section 2.1/6.3

IPT/CAD Tool Raytheon Enterprise Integration
Proc , Tools & Data S

+ Design Protocols [ CiIs | [ PIM | |Databases|

(86-81-11) £61108Q-L0L

* Manufacturing Processes
—Antenna Assembly Models VDA
—HE Microwave Model

\ CAD

etc.

« Costing Algorithms — P
— Array Assembly KB

« ProjE - —Machining KB
« Mentor Graphics W Integrated Product Team (IPT)
* « Design Engineers

 Cost Engineers

etc. * IT Support
| Section 3.0/5.0 * Procurement
c s * D?'\Egtes Factors * Manufacturing Process
ost Tool Sets > - - i i
—Parts Libraries . ngsgi:::se:gﬁd Finance
* Process Characterization
Tool Set (PCT) * —
» Cost Advantage (CA) Tools
» Raytheon Cost Tools etc.

Figure 6-5. Flow of Integrated Design and Cost Data

6.3.2 Design/Cost Tool and Data Implementation

The JMD implementation approach can be subdivided into the tool-to-tool integration
part for the two JMD prototype IT tools, Pro/E and CA, and a database integration part
for the cost estimating databases as outlined in Table 6-2. Both of the tools being
integrated can be executing concurrently under the control of the same workstation
because the UNIX environment is the foundation for the tool set, and the operating
system allows multiple windows to be open concurrently, The display screens provide a
‘cut and paste” capability as a manual means to “pick and place” data between
applications. It is the least desirable, however, because it is somewhat time-consuming,
requires specific user intervention, and is prone to the usual “man-in-the-loop”
repeatability/reliability issues.

Where the application tools supported it, the JMD implementation first took
advantage of the vendor-provided “encapsulation,” the wrapping of interface software
around application software. Encapsulation provided the ability to exchange data with
other applications by keeping the formatting, mapping, and communications
functionality isolated from and outside of the actual application itself. Applications
communicated and sent/received data in accordance with their internal
protocols/interfaces and the encapsulation software then provided the necessary
translations for the incoming and outgoing data. Vendor-provided encapsulations
supported relatively easier tool integration as opposed to either modifying or specially
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customizing the COTS S/W.

Where vendor-provided encapsulation did not exist and the manual cut and paste
methods proved too tedious, customized encapsulation software was defined and
developed to support the point-to-point data exchange between tools. This
encapsulation software used varying combinations of operating system capabilities,
custom program code and third-party vendor solutions to provide the necessary data
coupling between the two tools. Functionally the software provided the same level of
integration as did the vendor-provided tool encapsulation, except that the software was
not vendor-owned with the consequences that whenever a new version of the vendor
S/W was released, the custom software was at risk of being incompatible. Since it was
highly desirable to keep the vendors working towards vendor-provided encapsulation,
all vendors were involved with these custom encapsulation activities with the intent that
the software would one day become part of the Pro/E and CA S/W itself. Further, this
involvement helped define requirements for data-exchange standards between tools as
a goal toward establishing some reusable industry standards.

Development of a Cost Link to Mentor Graphics (MG) CAD Software. This effort
was added scope to the JMD SOW, which was jointly funded by Raytheon, Northrop
Grumman Corporation, Cognition Corp. (as uncompensated labor), and the JMD
Program Office through Wright Laboratories Material Directorate. The purpose of the
task was to develop an automated link between Cognition’s Cost Advantage (CA) tool
and MG’s Idea Station, Board Station and Hybrid Station tool set.

A specification for the Costlink-MG was provided to Raytheon and Northrop
Grumman in December 1996 for review and comment and an alpha test copy was
delivered in January 1997. The final version (CL-MG version 1.1) was delivered in April
1997 along with an Installation Guide and User’s Guide. This final delivery has been
accepted by both companies.

In support of this effort, Raytheon created a prototype CA model for substrate
fabrication, which was delivered to Cognition for demonstrating the usefulness of
Costlink-MG. For the JMD program, Costlink-MG was used with a substrate knowledge
base on the tile T/R module.

Several documents have been generated by Cognition that provide the details of this
customized encapsulation. These are:

* Costlink-MG Installation Guide — CL-MG version 1.1, April 1997

» Costlink-MG User’s Guide — CL-MG version 1.1, April 1997

* Product Specification — Costlink-MG, April 1997

* Costlink-PE User’s Guide — CL-PE version 2.0, October 1996
6.3.2.1 Design and Estimating Tool Integration. To keep cost-estimating cycle times
at a minimum so that design changes and resulting cost impacts were available almost

in real time, the Pro/E-CA tool and data integration required a mix of encapsulation and
point-to-point (direct) interfaces, because both the Pro/E CAD tool and the CA cost
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modeling tool had complex, proprietary methods to access and manage their internal
design and knowledge databases. At this point in the methodology demonstration,
changes to the vendors’ application software were strictly avoided and maximum use of
encapsulation and unique interface development were utilized instead.

The purpose of the integration was to make the design features from the Pro/E CAD
tool available to the CA cost model so that it could determine the cost of
fabricating/assembling an item with those design features. These features became
requirements/inputs to the manufacturing processes modeled in the cost tool.

While the Pro/E CAD tool provided the design features using definitions and formats
native to the Pro/E application source code, the CA cost tool (specifically the cost
model) had its own definitions and formats for design features and formats for model
variables. A fully automated linkage between the two required either or both vendors to
make significant changes to their software. Without these changes, a significant amount
of artificial intelligence was required to enable the automated connection of the design
features presented by the CAD tool to the closest or most appropriate design feature
modeled in the cost model. Needless to say, it became intuitively obvious that a set of
rules/standards needed to be established between the CAD designer and the cost
model designer regarding the requirements for the generation/consumption of design
features, along with standards for nomenclature, format, and design-detalil
breakdown/descriptions. These standards would enable the design and the cost model
to remain “data-synchronized” without any artificial intelligence to resolve the
discrepancies between design features on the one side that had no corresponding cost
model feature on the other.

Libraries/standards were required for the descriptive breakdown and capture of
design features, specifically those features that were in the design-trade space, which
were of primary interest for the first cut of a cost model. Since time was of the essence,
and while pure encapsulation by the vendors was being promoted, and while the
Raytheon enterprise established the necessary standards/rules, an interface “bridge”
was developed to map the design features from the one tool to the other. Once the
mapping had been established, the data exchange was automatic so that as the design
changed, the cost model automatically tracked it, unless some new features were
added that required additional mapping.

Instead of replicating the design disclosure and system details of the interface
“bridges” between the Pro/E-to-CA and the Mentor-Graphics-to-CA tool combinations,
reference is made to the documents that have been published for that purpose. For the
Pro/E-CA interface, the document “Costlink-PE User's Guide” from Cost Advantage
provides information on the implementation. For the Mentor Graphics/CA interface, the
“Costlink-MG Installation Guide” and the “Product Specification: Costlink-MG” provide
information on that tool-to-tool interface. A brief top-level description follows simply to
provide the necessary insight into the JMD prototype approach.

6.3.2.2 Pro/Engineer Cost Linking
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Initial Feature Linking. Design feature types and dimensions from Pro/E were manually
mapped to labels in the CA knowledge base. The mapping process used the CA
Annotator utility. These characteristics were then mapped to specific processes/cost
estimates using previously defined cost estimating relationship (CER) algorithms that
resided in the CA knowledge base. This sequence can be summarized as follows:

» Each design feature was mapped to a specific CA manufacturing feature, which
had been previously defined as being the outcome of applying a specific
manufacturing process. The end user (or model developer) must be able to
specify that a specific design feature (e.g., stepped hole) will be created by a
specific manufacturing process (e.g., multiple drilling operation).

« Each characteristic of a design feature (e.g., diameter, depth and tolerance for
each element of a stepped hole) was mapped into cost estimates. An
appropriately constructed knowledge base then estimated the cost for
performing the process based on the feature attributes and predefined CERs.
These CERSs can be developed in a number of ways, with the highest resolution
and accuracy being achieved when they are based on accurately measured
manufacturing process characteristics. Key CERs for the JMD full
demonstration were developed in this way.

Feature Updating. When feature dimensions or tolerances were changed, the updated
information was automatically linked directly into the CA model. The linkage used the
map created in the previous step via the Costlink utility that operated between Pro/E
and CA.

Initial feature mapping can be tedious for complex products, and this in itself
provided the drive for a more user-friendly approach. To this end, Raytheon and other
users had approached the tool vendors, Pro/E and CA, to undertake the required
modifications to the application S/W. In the interim, Raytheon’s team member,
Management Support Technology (MST), had designed and prototyped a Decision
Support System (DSS) that greatly reduced the burden of feature and dimension
annotation. It is described in the next section.

6.3.2.3 MST Decision Support System for Pro/Engineer. Even while the vendor
upgrades to the application software were under way concurrently in an indeterminate
time frame, and without relying on any aspect of such vendor upgrades, the MST
feature-labeling DSS provided a linkage from Pro/E features-dimensions-tolerance to
the CA cost model. The DSS approach was generic in that it could be extended to other
feature-based CAD tools with some modest effort.

The DSS mechanized and presented a consistent graphical user interface (GUI) to
the user, such that the initial man-in-the-loop Pro/E-CA linking effort was more
acceptable. The functional description of the DSS follows.

Feature Characteristic Description. Each design feature in Pro/E included a name and
values for its characteristics; i.e., dimensions and tolerances, and these name/values
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were what was required by the CA cost model. Unfortunately, the names/format used
on the CAD side are different that those used on the CA side. The CA cost model
required that there be a label on the Pro/E feature that corresponds to the label in the
cost model. Since it was easier to do this mapping in middleware software for reasons
mentioned earlier, the DSS was developed to facilitate this functionality.

For a model with a moderately large number of features (50-100) and
characteristics (100-500) this process tended to be tedious and time-consuming, and it
increased the initial cost estimation cycle time significantly, but it was a non-recurring
event. If CAD design changes were such that new features had been added, then only
these changes needed to be reviewed and labeled. To assist in the manual labeling
effort, the DSS utilized the CA feature extraction capability of the CA Annotator utility,
which provided a list of the features that had been incorporated into the cost model
along with the labels that had been assigned to them on the CA side of the interface.
The man-in-the-loop used this information to complete the “bridge” to the Pro/E side of
the interface by identifying the Pro/E counterpart features and dimensions/tolerances.
Although still man-in-the-loop oriented, the linkage was mechanized and was at least
repeatable/consistent in its implementation.

Feature Characteristic Labeling. The DSS greatly reduced the time required for the user
to label the required feature characteristics. With the Pro/E (MAP.PE) feature database
as an input, the DSS prompted the user by highlighting the feature and its dimensions in
a wire-frame view of the design model. The user was then required to select only those
characteristic labels that applied to the cost model for a particular feature. In cases
where the Pro/E feature had fixed characteristics, the labeling was done automatically.
The DSS also allowed the user to selectively label individual features that had changed
in a design iteration, rather than relabeling the entire design model as was required on
the initial (non-recurring) linkage.

Mapping Design to Manufacturing Features. The DSS allowed the user to create an
additional file (MAP.DSS) that identified those single Pro/E design features that may
have been associated with multiple CA manufacturing features. For these ambiguous
design (CAD) features, the user was prompted to decide which of the cost model
manufacturing processes was to be used. The user’s choice was then stored as an
“alternate type” characteristic in the Pro/E model, and this was what was used to link the
design model to the CA cost model. This DSS capability functions without the MAP.DSS
file, although the list of choices for an ambiguous Pro/E feature must then include all the
available manufacturing processes in the cost model. Using the DSS in this manner
required an additional step to save the Pro/E model in an external form. The external
form was then input to CA. The DSS produced an external description of the Pro/E
model that was then imported into a spreadsheet model. Because it functions externally
to Pro/E, it does not allow real-time linking but is used periodically throughout a CAD
session, requiring a few minutes per update. When the Costlink upgrade becomes
available, the DSS will accelerate annotation and then iterative updates can occur
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automatically via Costlink with no further intervention, unless a new feature is added
that requires additional annotation.

Mapping Design Features to Manufacturing Processes. Each design feature in Pro/E
has a “feature type” that is integral to the process of building the Pro/E model.
Unfortunately, the feature types assigned by Pro/E, and subsequently mapped to the
CA manufacturing process model, have inadequate resolution for distinguishing
important process/cost characteristics. For example, a straight hole and a countered-
bored hole both have a feature type of “HOLE.” However, the manufacturing processes
necessary to create each differ greatly. While the Pro/E user can modify a feature name
or add another characteristic called “alternate feature type,” the existing CA model
linkage uses only the “feature type” to link the design and cost models. Since this
limitation drastically limited the precision of the model, Cognition released an
enhancement to Costlink that used the “alternate type” to map the design model to the
cost model.

6.3.2.4 Cognition CA Performance Enhancements. Raytheon’s exploratory modeling
approach used “cost coefficients” as CERs for each element of an NC milling process.
These coefficients were, in general, applied to a measure of the process complexity
based on the dimensions and tolerances extracted from the Pro/E model. For the
exploratory work, the coefficients were based on handbook values or other external
sources, rather than on actual cost data. Initial attempts at estimating the product cost
associated with NC-milling from a Pro/E model using this technique took 20 minutes to
execute for a relatively complex part. When this concern was discussed with Cognition,
they responded with a solution in a very timely manner, releasing a performance
enhancement kit that allowed cost equation functions to be “compiled” in LISP.
Implementation of this kit substantially reduced the time that it took to execute the cost
model to 30 seconds or so.

6.3.2.5 Design/Cost Data Integration Approach. Because the data formats of most
applications are often strongly focused on the internal requirements of that application,
Raytheon had chosen to address data integration as an important and separate task
from the tool integration, even for applications adhering to open systems standards.
This was done to assist in the development of data requirements that were not unduly
influenced by any particular application or vendor, and that were at a higher level of
systems implementation so as to remain relatively tool independent. This provided a
means to develop and then “push back” data requirements to the many vendors whose
applications were part of Raytheon’s enterprise. For the JMD demonstration, all
methods of data integration were characterized by data format translations and data
mapping translations for both the sending and receiving of data between the tools being
integrated.

Data integration was accomplished first with database consolidation, where
economically advantageous, and second and more importantly through a more directed
form of data integration.
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Database Consolidation — Database consolidation involved the physical collocation
of data in a common repository. This was accomplished by the expanded use of existing
functionality in the latest release of the CIS product. This product supported a soft-
modeling capability that allowed the inclusion of an almost infinite number of data types
of data in a common repository. Data types in the repository could be linked without
changing the underlying database structure. This capability in a COTS package added
dramatically to the capability to house heterogeneous data in a common repository.

Point-to-Point Forms of Data Integration — While the scope of direct integration for
the JMD demonstration was manageable in size, extension of a direct integration
approach to the full IPT environment could quickly create an unmanageable number of
point-to-point integration solutions. This complexity is portrayed in Figure 6-6, where
there are N databases for M users requiring up to MxN integrations/connections. This
was not viable on a large scale, especially given the limited number of vendor-provided
encapsulations that were available. Further, given the variety of data types and formats
to be integrated, there was greater risk that complex and incompatible solutions would
be developed for many of the interfaces. The administrative aspects of such an
implementation (security, permissions, configuration control, etc.) made a solution
tending more towards M+N integrations/connections more highly favored.

A “virtual” data integration scheme using a virtual database agent (VDA) was the
solution used for the JMD IT prototype. The VDA provided a data access resource for
delivering the right data in the right format to an application at the right time. The VDA
presented the image of a coherent data source to an application. In this way, the
application was isolated from the actual data interface and did not need to have the
database format or protocol. The VDA itself presented a “virtual” data interface on the
one side to one or more applications, while on the other side provided the one-shot
actual interface to the sources of data. Of the M+N connections, M are encapsulations
that ultimately would be vendor-provided, and N are identical Web-like connections to a
UNIX server. The solution scales nicely, and the VDA provided a centralized piece of
middleware software for housing the M interfaces to the backend data servers (as
illustrated in Figure 6-12, Prototype IT Architecture), which made configuration control
and design changes much more manageable.
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Figure 6-6. Large Scale Point-to-Point Data Integration Complexity

In summary, the VDA was characterized as:

» A coherent source of data to the client-side application

» A homogeneous platform for the acquisition and transformation of all types of

data from heterogeneous sources

* An intelligent agent for efficiently gathering data based on the business logic

that can be made part of the VDA

By providing a transparent mechanism for managing data interfaces, the VDA has
shown the potential to reduce the cost and complexity of managing data integration

across a given business unit, and ultimately
across enterprises. For the JMD prototype,
the VDA enabled the exchange of data cis
necessary to the Pro/E and Cost Advantage
tools, as depicted in Figure 6-7.

This capability was fully extensible to the
broader scope of integrating all the data
necessary to support a full IPT, as shown in

Figure 6-8.
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6.3.3 Implementation of IPT Cost

Modeling

6.3.3.1 Cost

Estimation

Figure 6-7. Scope of the JMD VDA Data

Integration

Using Cost

Models. Design, cost and manufacturing engineers on the module IPT identified the
need to produce usable, documented, and traceable cost estimates in some automated
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Figure 6-8. Scalability of the VDA Data Integration

manner using controlled and validated cost models.
The IPT felt that the basics for such a need for a cost model included at least:
» Being database-driven as a means to control and configure deployment and to
facilitate changes without re-engineering the cost models for:

— Descriptions of the manufacturing processes used to model the production of a
class of parts or components

— Current (or historical) values that characterize the descriptions of
manufacturing process used in the cost model

— Current (or historical) costs of purchased parts included in the indentured
assembly drawing depicted by the cost model

— Tailoring information such as rates, factors, build quantities and time frame for
a particular program

» The automatic capture of the design characteristics and parts list of a part or
component that affect the fabrication or assembly cost

* Producing a usable estimate of unit manufacturing cost in a relatively short
period of time (minutes or less for a simple design alteration)

* Producing repeatable results, and tailorable reports

+ Validation of subassembilies for integration into next-level design assemblies, in
accordance with some designated product structure information

+ Support for a wide spectrum of the design life cycle using models that:

— Enabled “make from similar articles” with simple additions/deletions during the
early stages of a design when drawings or design details were simply not
available

— Enabled design details to be turned on/added as the knowledge about the
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design solidified

Based on the above, and for the purposes of assessing the applicability of the
various vendor supplied (COTS) tools that were available for generating cost estimates,
several additional features were identified and are given below.

1.

Have feature “bandwidth” (selectable features or characteristics) that include the
critical design trades that a design or cost engineer might invoke to test the
sensitivity of the cost of a design. Design features/characteristics include but are
not limited to materials, part types and part characteristics (such as form,
reliability, testability, availability, preferability, size, weight, etc.), manufacturing
characteristics and processes required as a function of part types and part
characteristics, etc. For example, to enable the substitution in a milled part of a
simple drilled hole for a stepped hole, the cost model must include and be able to
select between the manufacturing implementation that contains
formulas/equations for these two features, track the design configuration of this
and other selections as they are being made, all while dynamically computing a
total cost for the entire design/cost model.

. Present both a screen and hard copy detailed cost breakdown of a design in

such a manner that the costs of features are not only visible but accessible for
changing. The presentation of information must be detailed and appropriate for
the determination of cost “hot spots,” so that design analysis and trades will
naturally focus on features that have the greatest impact not just on reducing
cost but on those features that might increase costs if the manufacturing process
behind them is not properly monitored/controlled. The depth of detail must
correspond to the degrees of control that are potentially available to the various
IPT members to influence and drive down costs. For example, if inspecting a
complex assembly requires special equipment, special handling, special
environments, etc., then these have to be modeled so that they are part of the
cost breakdown and cost presentation.

Be credible and reasonably accurate for IPT team member buy-in (i.e.,
acceptance and utilization). This means that the cost model must be validatable,
preferably by being able to accurately replicate the actual cost of previously built
articles, and the cost model must provide sufficient visibility to the detailed
elements of cost that are generated by the cost model to enable IPT team
members to correlate cost data with the actual factory or manufacturing
processes that have been captured. For example, if a test engineer does not see
testing as an element of the cost model and detailed cost breakdown, then the
model will understandably lack credibility and will have appeared to have
excluded testing from the consequences of the design trade space.

Be repeatable, especially in light of the run-time operator judgments and run-time
selections of options that the model exposes to the design/cost engineer as a
means to configure the cost model for optimizing the hardware design. As
important to the actual run-time configuration of the cost model are the
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configuration of the authored equations/knowledge in the cost model, and the
other external databases that can be consumed in those equations to calculate
costs. All of these can be under a constant state of change to reflect the most
accurate present state of external conditions (i.e., manufacturing improvements,
rates and factors, component prices, yields, reliability data, etc.). There are two
aspects to repeatability required for the different stages of the
design/manufacturing life-cycle: short-term and long-term.

5. Produce revised estimates with turnaround times of minutes for simple changes
to not more than a day for more complex changes that may include a roll-up from
the lowest level to the highest level of an indentured assembly.

6. Be capable of interface with electrical and mechanical design (CAD) tools that
generate/capture design features born in this part of the design process and that
are design trade variables that need to be globally visible to the overall cost
estimating enterprise so that they can be inputs for consumption in a cost model;
inputs which might otherwise have to be manually entered into a cost model. This
interface can be either a real-time (direct) link for a more interactive rapid
flowdown of design changes into a cost model or a non-real-time (indirect) link, in
which case some level of manual intervention may be necessary. In either case
both interfaces require the design tool to expose the features database for export
to other applications such as the cost modeling tool. This subsequently requires
that the cost modeling tool be receptive to importing the data for consumption by
the cost model equations. As concerns repeatability and validation, the features
database and the design tool/model that generates it add one more dimension to
the management of databases and the configuration of an integrated two-tool
system. A direct link is optimal and most desirable; however, the indirect link
would suffice for the early stages of methodology exploitation.

The PDM Graphical User Interface (PGUI) was initially chosen in order to provide
the IPTs with a user friendly method for launching cost application software.
Unfortunately, the PGUI was very platform specific (i.e., UNIX based), the result of a
proprietary development that produced a reusable element for Raytheon’s tailored PIM
Sherpa product development. In the early stages of the JMD methodology development,
it was an expedient choice for a GUI because other architectural and design issues
were more important to resolve. However, subsequent COTS developments in both the
intra- and Internet technologies and the GUI technologies offered such significant
benefits for an architectural upgrade that the industry CORBA standard was
subsequently adopted for the JMD program. Figure 6-9 illustrates the JGUI, which is
further described in Appendix B — Detailed Technical Specifications, under A.5.1, JMD
GUI (JGUI) and in Exhibit | — JMD Operational Test Procedures. (Note the name
change from PGUI to JGUI for JMD Graphical User Interface.)
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1, 2, up to N-at-a-time permutations that might be tested by the design/cost engineer. At
some point in time, some of these designs may be discarded in favor of those design
approaches that have cost merit and cost credibility for a continuing evolution of
additional trades that will ultimately lead to the final design. Even those designs that
have been discarded may need to be archived and retrievable for some period of time
until such time that a final design has ultimately been declared.

Eventually drawings would be generated and the most favored design cost model
would be updated, and perhaps even the cost model itself revised to reflect the new
wealth and depth of the detailed knowledge now available about the design.

In the foregoing utilization scenario of a design-trades life cycle, some special
configuration management requirements, over and above the normal requirements for a
product development, were identified:

1. Develop and track multiple alternative designs and their corresponding cost
estimates without releasing a new product version

2. Release a new product version incorporating the then-current “approved” design
and cost model results

3. Retrieve previous versions of a product at any level of an indentured parts list
(IPL) for review or reuse in a subsequent program

4. Incorporate and associate the full detail of the design (Pro/E or other model) and
cost (CA or other model) with each configured version

6.3.3.3 Cost Database Accessibility. Just as a features database was identified in the
export/import link to the cost model with a CAD tool four broad classes of cost data
were organized into databases to support DTC cost estimation requirements. Each
class of data had multiple sources or databases within the existing IT framework. Where
practical, a common format or “data warehouse” was identified for the integration of
multiple sources. Where such integration was not practical, a VDA was used to create
the appearance of an integrated database.

The following four classes of cost data were addressed in the JMD IT Prototype
architecture:
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» Manufacturing Process Library — identifies and describes the manufacturing
processes available at a specific facility.

* Machine and Assembly Cost Factors — each entry in the manufacturing process
library must contain the applicable cost factors in a form usable by the cost
estimation tools.

* Parts Cost — contains part cost information and the relationship of cost to lead
time, quantity and other considerations. CP/CPK figures by tolerance should
also be supported.

» Programmatic/Business Factors — contains factors for labor rates, overhead
factors, build rates, learning curve position, etc., applicable to a given program
and product.

Manufacturing or Assembly Process Characterization. This data provides the cost
model framework for a particular manufacturing or assembly process with the current
(or historical) values that are needed to produce an estimate of the unit manufacturing
cost of a specific part or assembly. For a complete DTC capability, manufacturing
processes are required to include fabrication, assembly, integration and test. The IPT
must be able to view the available processes as a process library, from which team
members can select and locate the particular machine, assembly or other cost element.
Exhibit D of Appendix B provides more detail on the implementation of the
manufacturing process characterization.

Parts Cost. The cost of each purchased part (from an outside vendor or Raytheon cost
transfer) to be included in an assembly must be available. These costs may vary by
lead time, quantity and other considerations. Sigma and DPU data should also be
accessible.

Programmatics and Business Factors. Program and business factors—rates,
overhead factors, build quantity and build rate—that affect product cost must be
available. In addition, the position on and slope of the “learning curve” may also affect
the cost estimate.

6.3.4 Virtual Database Agent (VDA)
6.3.4.1 VDA Overview

Object Oriented Technology Concepts. Object technology was fundamental to the
implementation of a VDA. The notion was that data and process (code) were linked into
a single entity called an object. An application program did not directly access data from
storage. Instead, the application program got data by calling a method associated with
the required piece of data. A method was simply a procedure or subroutine that was
bound to the object, and had the job of delivering the value of the requested data item.
The calling application program, sometimes referred to as a client, had no need to know
— and should not care — how a method got the desired data value. It was the job
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Leveraging Encapsulation. Encapsulation
offered significant advantages over direct
access to the data. Given a request for data, it was up to the object itself to figure out
how to get and deliver that data. That delivery method actually executed some
complicated code to produce the required data. For example:

Figure 6-10. Object Schematic

* The required data was locally or internally stored within the object and simply
delivered by the method.

* The required data was known to reside at a remote location and the object
executed a remote process to retrieve the data and deliver it.

» The data was available in a format compatible with the calling application; e.g.,
a CAD program that was expecting a key-value parameter string.

» The data had to be transformed by the object to conform to the format required
by an application. For example, data stored using a relational database
management system (RDBMS) was accessed by a CAD program that
expected a key-value parameter string.

Providing Different Interfaces to the Same Data. Because encapsulation restricted data
access to the use of methods, it was possible to group methods into coherent sets that
presented the same data in different formats. This grouping of data was called an
interface. Thus, one application may request data using a traditional structured query
language (SQL) access method such as Microsoft's ODBC. Another application, such
as a CAD program, might want data delivered as a drawing object. The software
designer can create interfaces that provide these very different windows on the same
underlying data contained in an object. The schematic for an object shown in Figure 6-
11 illustrates the grouping of methods into interfaces.
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Combining all these features created an object that could gather data from different
sources, store some data locally if necessary, and retrieve other data on demand. An
object also appeared to have the characteristics of different data sources depending on
the needs of the application requesting data. It was this object that was being defined as
a VDA.

The single layer “encapsulation shell” depicted in Figure 6-11 appears simplistic. In
reality there are several layers. Those layers closest to the data implement methods to
access/format data, whereas those layers on the outside implement methods more
related to the communications/networking of objects. In between, there can be layers
that provide the generic functionality, such as that described in the following sections.

When JMD prototype development first started, a COTS software implementation of
a VDA with the required functionality simply did not exist. Extensive industry activity
under way at the beginning of the JMD program has since resulted in applicable COTS
software becoming available. The following functionality descriptions for a VDA are
relevant for both the Raytheon VDA developed in the first phase of the JMD prototype
and the subsequent upgrade that incorporated the COTS CORBA software that became
available in 1997.

6.3.4.2 Desired VDA/CORBA Functionality

Administrative Methods and Intelligent Agents. If a VDA were simply to provide a
coherent but passive interface to an application, it would not be much more powerful
than a well-defined standard Application Programming Interface (API). However, the
VDA contained code as well as data. It acted as an application program or client,
thereby becoming an intelligent agent. The VDA might then call other VDAs,
applications or data sources to perform a wide range of access, scheduling or error
processing functions. To act as an Object with Interfaces

intelligent agent, the VDA had to be able to / Method Access
receive instructions on what to do in various / ﬁig‘r‘fgig;“to
situations. This was accomplished by

adding to the data interface methods a body
of administrative methods and the
associated self-contained storage that let an
outside program or programmer provide the _
appropriate instructions. For example, an Encapsulation
administrative method could schedule the Shell
polling of a data source on a regular basis
or select an action in the event a data
transmission fails. Finally, the VDA contained a set of methods that allowed an outside
program or programmer to discover everything about the VDA's state.
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Figure 6-11. Object with Interfaces

Events and Event Brokers. A special kind of method, called an event, is very useful in
an environment where a number of VDAs or other objects exist and must work together.
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An event is basically a reverse method where the VDA or other object publishes an
occurrence of a particular event. This notification of the event is then available to any
other object that may be interested in the event as a trigger for some other processing
upon its occurrence. For events to work there must be an event transaction broker that
listens for events and knows what objects, programs or VDAs may be interested in
them. The broker invokes a method in the interested object to signify that the particular
event has occurred.

The use of events and an event transaction broker was not required to implement a
VDA, but their capabilities greatly simplify the design and architecture of systems that
incorporate VDAs. Event handling is similar to encapsulation, because it makes the
linking of components in such a system connectionless. For example, a VDA can send
an event message saying it needs some data from a particular data source. The broker
takes the message and stores it until the processor with that data source is on-line and
available. When that data source is ready it can send data back to the broker, which will
forward it to the requesting VDA.
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6.3.4.3 Important VDA Features

Interfaces

The VDA was required to support a number of different interfaces. Its primary interface
was to the target application itself. Requests from the target application were interactive
and focused on the application’s processing requirements. For example, a VDA
supporting manufacturing cost models delivered cost, manufacturing and design data in
a “key-value” parameter format. Since this data was accumulated from many sources, it
was “buffered” in the VDA. To accomplish this, the VDA gathered larger sets of data
covering a best guess of less specific data required for a particular cost modeling
session (i.e., a domain-limited subset of the global cost database). The VDA retrieved
remote data on a near real-time (adequate for interactive processing) basis if the
necessary data had not already been successfully buffered in such a domain limited
best-guess set. Specific data availability and cycle time requirements were used to
determine the best approach for each data type. In addition to the direct target
application (in this case a cost model), future VDA capabilities should support a related
interface to allow larger sets of data to be accessed by a standard reporting program.
This might be done by supporting a general RDBMS API such as ODBC.

The idea of an interface was quite general. By simultaneously supporting more than
one interface, the VDA acted as a heterogeneous data supplier. It fit the needs of any
application program requiring data in a format supported by the VDA. The VDA allowed
new interfaces to be defined and methods to be provided for those new interfaces. The
ultimate scope and number of interfaces that may be supported cannot be predicted
until the prototype VDA has been beta-tested in a controlled environment focused on
benchmarking user requirements on real design developments and production.

Access Routines

On the “back end” (i.e., the data source/inner side of the interface), the VDA had access
routines to the various data sources that it needed to support the requirements of the
target application. The ability to add a set of access routines is modular so that new
sources can be added as needed. As with interfaces, industry standard access routines
such as ODBC were supported whenever possible. The largest challenge was the
creation of routines to access data embedded in programs or archived in non-standard
formats.

Scripting

The VDA required a flexible scripting language to connect interface methods to the
access routines, to deal with scheduling and to handle events. Some characteristics of
the scripting language were:

* Was the glue between the interface methods and the access routines,
producing a coherent set of actions when an interface method was invoked.

» Handled a set of asynchronous events and executed scheduled procedures. In
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order for the VDA to be efficient, it was unrealistic and potentially impossible to
synchronously access all the necessary data sources required for a data
request. Instead, some data was locally buffered within the VDA.

» Scheduled procedures to investigate data source changes and retrieve updated
data when changes had occurred. In addition, some changes in data sources
may be asynchronously reported to the VDA. The scripting language allowed
procedures to be written to handle these events.

» Was available as an off-the-shelf technology.

Persistence

Theoretically, the VDA should have no persistence; that is, there should be no need to
store any data or state information once the client applications it served are no longer
active. However, because of the requirement to find, open and access remote data
sources the lack of persistence results in inefficiencies. The inclusion of an internal
data-store with persistence significantly improves the efficiency of the VDA by providing
data integrity and synchronization capabilities. For example, when the local persistent
store recognized that the remote state information or data had changed, it could refresh
itself appropriately. However, this local persistent store now had to be included in the
configuration management scheme, and although this added complexity, it may be
determined to be required in any practicable cost-estimation implementation of the VDA.

Push/Pull Data Buffering

In its simplest form, the VDA operates in a purely “pull” mode. Data is gathered by the
VDA on demand from a client application. Unfortunately, some of the data sources that
the VDA accesses are not formal or well organized. For example, data can be
embedded in manufacturing process software or resident on individual workstation
spreadsheets. In such cases it is easier to use the event capability to “push” data from
the remote data source to the VDA when certain events occur. The data is then held in
a local store until it is accessed on a “pull” basis by a client application. Handling the
conversion from push to pull is one of the greatest strengths of the VDA concept.

6.3.4.4 VDA Prototype Architecture. Figure 6-12 shows the prototype IT architecture,
which includes two VDA modules.

Both of these modules have three significant components:
» The client-side and backside interfaces
* The business logic that determines how and where to route requests
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Figure 6-12. Prototype IT Architecture

* The methods that translate and format the requests to extract/deposit data
from/to the target databases

It is very important to note that within the VDA modules are large segments of
functionality (methods and data I/Fs) that are accessible on an ORB, which means that
any computer on the network using the IDL in the ORB depository can access and use
the same functionality from anywhere on the network. In addition, the VDA modules can
be replicated many times, or can be tailored for specific business logic, and also reside
on the same or different servers to act as the middleware between the client
applications and the backend database servers. The JMD IT architecture is robust,
modular and scaleable, to match requirements for many simultaneous users and for a
graceful productization of the JMD capability.

As shown in Figure 6-12, VDA Module 1 “translates” cost and configuration data
from the four classes of cost related data (Rates and Factors, Program Information,
Manufacturing (PCT) Data, and Parts, Prices, and Component Data) into a form usable
by the cost estimating tools. VDA Module 2 translates data produced by the integrated
design/cost estimation tools into a form usable by the CM repository and cost rollup
tools.
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Additional detail on the IT architecture of the two VDA modules is contained in the
following subsections.

VDA Module 1 — Cost and Parts Data to Estimating Tools. Figure 6-12 illustrates the
multiple database connections established by VDA Module 1. VDA Module 1 operates
on a “pull” model. The client-side applications request the needed data through VDA
Module 1, which in turn extracts the data in the form needed by the client-side
application.

Several data objects are required by the client-side applications Pro/E, CA, and
Mentor Graphics. To avoid the need to modify these application tools, the data objects
are delivered as sets of files into the UNIX environment on the client-side, shown as a
“‘client-side data object” in Figure 6-12. These files are located in a particular
subdirectory of the UNIX file system accessible to the client-side applications. Separate
subdirectories are created for each “class” of part or assembly to be designed or
estimated, which as an entity become a “data object library” on the client-side. For
example, there would be separate subdirectories for NC milled parts, electronic
assemblies and mechanical assemblies. Once this data is on the client-side, it
represents a small snapshot of the gigabytes of data stored on the backend servers,
and until other requests for snapshots are made, this client-side data is in a controlled
frozen state for the duration of the cost-estimating exercise.

At this point in time, the construct of the client-side data object has been kept simple
and is in the form of “flat files.” Nothing in the JMD prototype IT architecture precludes
these files from becoming a true hierarchical data object that resides on the ORB (as
shown by the dotted lines in Figure 6-12). This would enable a client-side data object to
be visible and sharable from anywhere on the ORB network, and would significantly
ease configuration management and control of a single data object for a program or at
the program management level. However, this feature was left as an enhancement for
the next phase of the IT architecture development.

One of the more significant data connections established by VDA Module 1 is that of
the Ingres connection to the backend Process Characterization Tool (PCT) database.
The database construct, for which the ESQL methods shown in Figure 6-12 were
developed, is described in Appendix A, Detailed Technical Specifications, Section A.4 —
Data Model.

VDA Module 2 - Estimate Result to Rollup Tool and PIM. Figure 6-12 shows a very
simplistic VDA Module 2, mainly to illustrate that the VDA itself is modularly expandable
to meet the specific needs and uniqueness of such legacy systems as Raytheon’s PIM
(COTS) application. Rather than having a large monolithic VDA, the segmenting of it
into modules helps to isolate changes and enhances the reusability of those elements
that stand alone.

VDA Module 2 is in many respects similar to VDA Module 1 in that it has the three
components: the client-side and backside interfaces, the business logic, and the
methods that translate and format the requests to extract (deposit in this case)
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data from the target databases. However, there are some differences that are worth
noting: (1) the VDA Module 2 operates both on a “push” model for archiving the cost-
estimate resulting from a cost modeling session on the client-side, and then on a “pull”
model for those client-side applications that wish to retrieve that cost data from PIM,;
and (2) the backend I/F does not have an IDL and is not on the ORB.

Raytheon believes that developing the IDL for the ORB for COTS software, such as
the PIM and Aspect in Figure 6-12, is truly a vendor activity and responsibility, and
given the tremendous industry shift towards the CORBA standards being developed by
the industry itself, it is simply a matter of time for all vendors to supply an IDL for their
products, not unlike the APIs they currently provide, except that the IDLs will be in a
standard protocol that is ORB compliant.

6.3.4.5 Mini-VDA Demo. The following describes the VDA mini-demo completed in
August 1996. The mini-demo illustrated the feasibility and use of the VDA architecture
as a robust solution for the integration of applications and databases for the Design-to-
Cost (DTC) enterprise, and the full demo is targeted for a major radar assembly using
multiple process and cost models to roll up the cost of the indentured subassembilies.

VDA Module 1. The scope of VDA Module 1 was limited to accessing the backend
server databases for the data required by the pilot program (HDMP T/R module
design/development) cost models and the Active Array Radar Antenna assembly, which
uses the T/R modules.

Output
Figure 6-13 is a sample VDA Module 1 output to CA for the NC Milling process.

Inputs
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Inputs for VDA Module 1 varied based on the data that was being requested from
the VDA and the calling application or tool. A message protocol consisted of a set of
formats, rules and standards that defined the contents of messages between two
communicating processes. These contents included general information such as user,
message type, and length, as well as transaction-specific information. All requests for
data from the VDA followed a standard message protocol. The protocols for the JMD IT
architecture are described in Appendix B of this document.

VDA Module 2. The scope of VDA Module 2 for the mini-demo was to archive the cost
estimates generated for the various part numbers associated with the pilot programs,

which were generated from the cost
modeling exercises on the CA application
on the client-side. For the full demo, the file
sets produced by the Pro/E and CA
applications are to be archived on PIM. The
Pro/E outputs will be delivered as a pair of
.PRT and .DRW files containing the design
model and its display representations.

The CA outputs will be delivered as the
set of files shown in Table 6-4. Point
estimates are delivered by a direct
procedure call that references the part
number.

Table 6-4. CA Output File Types

File Types File Contents
.est Cost Estimate Instance
map.* Mapping to Pro/E
.prc Process Characterization
.mat Material Cost
.ppr Part Price
.rat Rates and Factors
.pgm Program Information

6.3.4.6 Planned Full VDA Demo. The example below illustrates a typical use of the
tool and data integration as had been planned for the JMD full demonstration. The

(86-21-11) 3612€£080-€10

Process Characterization DATA Fabrication Labor D E
Manufacturing Process: NC_Milling Assemblv Store Room F G
Machine Type: Matsuura 800 Ins ectio¥1 H |
Material Cost: $2.00/lb P o Support k K
Material Type AL Implementation L M
Coeff. Units Feature .
A1=1.0 Minutes/Bits Hole(s) Location Quallty Fool ., N 8
A2=.02 Minutes/(Depth*Bits) Hole(s) Material Removal Secretarial Pool R S
A3=1.0 Minutes/(Depth*Bits) Contour (Material Removal) Manaaement Pool T U
A4=1.0 Minutes/(Depth*Bits) Chamfer (Material Removal) Management Pool v W
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A5=1.0 Minutes/Bits Cosmetic Location .
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Figure 6-13. VDA Module 1 Outputs to CA for the NC Milling Process Inputs (Data for Display

Purposes Only)
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scenario is the design of a mechanical part for the tile array module. The two primary
tools used in the example are the mechanical CAD tool Pro/E and the cost
estimating/design advisor tool, Cost Advantage. Three additional
applications/databases provide supporting data. Included with each user action is a
description of the events occurring behind the scenes. This scenario assumes that a
prior modeling session (the mini-demo) has been completed, in which the IPT cost
engineer has:

 Created the needed CA knowledge base and cost models using the CA
application tool

» Used the VDA to retrieve part and process data appropriate to the design being
analyzed (rates and factors, process characterization, programmatics, part
prices, etc.).

Step 1. The user clicks on the JGUI toolbar on his desktop to retrieve the Pro/E
solid model or drawing and the corresponding CA cost model framework with which he
wishes to work.

» A JGUI script is executed that initiates a request to a VDA for the model or
drawing.

» Upon receipt of the request, the VDA retrieves the models from the appropriate
sources and copies them to the appropriate user directory.
Step 2. The user clicks on the JGUI toolbar on his desktop to initiate a session with
the Pro/E and the CA in a linked mode.

» A JGUI script is executed that opens and links both applications.

Step 3. From within Pro/E, the designer opens the model representing the part and
activates the “costlink” from a pulldown menu.

» The associated CA cost model framework is automatically opened.

» CA retrieves the information associated with the current design model and
displays the cost rollup.
Step 4. The user begins design modifications to the Pro/E model (see steps 7 and 8
for conditional requirements/alternate procedures).

 Costlink updates the CA features with the changes and CA then computes
costs and gives design advisories (such as “outside desired limits”) if
applicable. Design advisories, and the actions permitted as a result of an
activity or parameter exceeding the knowledge base thresholds, are strictly a
function of the intelligence authored into the cost model by the cost model
developer.

» If design advisories were issued and specific user directions given, CA records
these actions for subsequent reviews.

Step 5. The user reviews the estimate and determines if the design meets cost and
performance goals. If it does not meet cost goals, step 4 is repeated until the cost goals
are either met or the lowest cost has been  achieved within the limitations or
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capabilities of the cost model. Whenever a design and cost are to be saved for
continued refinements and approvals, a configuration designator is assigned to both the
design and cost models so that they can be archived without destroying the
predecessor configurations.

Step 6. The user requests design advisory override reports and reviews them with
the manufacturing/process engineers for possible impact or suggested alternatives.

Step 7. If any design feature, process data, or part selected is determined to be an
unknown to the cost model because: (1) the existing client-side “snapshot” of the
databases does not have the required data, or (2) the cost model itself does not have
the necessary processes wired into its manufacturing/assembly schematic, then one of
two things must happen next. For (1), the user must initiate the update of the client-side
databases using the VDA; for (2), the cost modeler must update the cost model to
include the additional intelligence required for the process/features required. This type
of updating is done outside of the design session as follows:

* For (1):
— A JGUI script initiates a request to the VDA to retrieve the data type selected
on the JGUI menus (i.e., part cost data for a particular part from CIS)

— The VDA'’s business logic determines the backend database server and flows
down the request

— The VDA receives the information and formats it for the return to the JGUI,
which then puts it into the client-side data object so that it is available for the
next design session and will no longer be an unknown

* For (2):

— The cost model is revised, its configuration designator bumped up by one, and
the latest release is archived into PIM so as to be available for step 3.

Step 8. Designer returns to step 3 now that the unknowns have been resolved in the
databases and the cost model.

Figure 6-14 updates the initial interfaces of Figure 6-8 to illustrate the cross-
application interfaces necessary to support the JMD demonstrations. Table 6-5
describes the tool/data interfaces planned to support the JMD demonstrations.
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Figure 6-14. Cross-Application Interfaces

Table 6-5. Tool and Data Interfaces for JMD Demonstrations

Path Requester/

ID Initiator Provider User Data Description

I-1 Cost Advantage | Pro/E Cost Advantage Pro/E model information

-2 JGUI PIM Cost Advantage Indentured parts lists

-3 JGUI PIM Pro/E Drawing/model files

I-4 JGUI CA/rollup tool PIM Estimating tool outputs

I-5 JGUI CIS Cost Advantage Part data including cost and sigma data

I-6 JGUI Oracle database | Cost Advantage Process data including cost and sigma data

-7 JGUI Oracle database Cost Advantage Labor, overhead and other rates

-8 JGUI Oracle database | Cost Advantage Programmatic data such as build quantity

1-9 JGUI Ingres database Cost Advantage Manufacturing data captured by Raytheon’s
Process Characterization Tool (PCT)

All JGUI I-Kinetics VDA Cost Advantage Virtual database agent’s object request
broker

6.3.5 Lessons Learned

The JMD IT prototype development effort and the methodologies demonstrated clearly
indicate that the principal objectives of the program were met and worthy of being the
foundations for a future productized version of the concepts and capabilities. This
conclusion is summarized as follows:

1. A reduced number of sources for data through the use of common libraries and
common repositories. The tools of choice that had been selected for global use
within Raytheon, provided an adequate and sufficient set of information sources
and destinations for the development of common design and cost models. The
common libraries and repositories established a manageable and effective

framework for data connections and
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2. Improved access to commonly used data, first through a direct integration and
second through a “virtual” integration of data. The VDA, with its capabilities for
determining requested data access and formatting, provided an effective single-
point interface between the client-side data consumers and the back-end data
suppliers.

3. Enhanced information exchange between applications and tools used by the
functional organizations. With the common tools of choice forming a solid basis
for use within Raytheon, and the exchange and interface of data among them
provided by the VDA, the functional organizations were able to proceed with a full
demonstration on the JMD program. The benefits of standardization as a result of
these enhancements were very important to promoting confidence in the data
being generated and shared, as well as acceptability of the results that were
being cooperatively generated.

4. Enterprise wide support will take dedication and continual maintenance.
Experience on maintaining many UNIX based CAD and cost programs had
shown that version changes and operating environment changes necessitated
the need for continual updating of software connectivity by system
administrators.

The value of COTS and of standardizations toward the successes of the JMD
program cannot be over-emphasized. For example, the CORBA industry standards that
were utilized for the IT infrastructure have shown that the VDA can be made very
independent of the nature and characteristics of the client-side and back-end servers,
and thus can achieve much greater reusability among the JSF community. The
experience on this program has shown that CORBA implementation can be effectively
created by outside suppliers such as |-Kinetics. Use of CORBA experts minimized the
cost and schedule which is a key reason for selecting this standard. The details of
Raytheon’s JMD implementation of the methodologies have been provided in the
Appendix as a means to assist in the establishment of similar capabilities by other
users. Although the Ingres and Oracle back-end CORBA interfaces were not completed
to the extent of being debugged or demonstrated, the client-side CORBA interfaces
clearly demonstrated the benefits and simplicity of utilizing the CORBA industry
standards for this application. It was not our intention to fully explain the details of the
CORBA standard within this report. References are provided in the reference section of
this report.
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APPENDIX A — DETAILED TECHNICAL SPECIFICATIONS

A.1 Purpose

The purpose of this appendix is to provide the detail software performance
specifications for integrating the applications and data required to support the
engineering design environment. Raytheon, CSC and MST have co-developed the
software described to support the JSF Manufacturing Demonstration (JMD) Program at
Raytheon Systems Company.

A.2 JMD Scope 2
The primary IT effort for JMD was Ran and Product | | Manufacturing| &
centered on integrating the design and '—g;f]?ary Structure a“"gg’t‘:“e g
cost data and tools required to enable £
IPTs to reduce product cost through more P
rapid and accurate design/cost tradeoffs. ,

p Cost Design
Specifically, focus was on the use of the Knowledge Knowledge
Pro/E mechanical CAD tool and the Cost Base Base

Advantage (CA) design advisor and cost
estimating tool and their joint integration  Figure A-1. Data Types

with a representative sample of cost data. As shown in Figure A-1, Raytheon integrated
the following elements into the JMD IT architecture:

* The linkage and translation of common data shared between Pro/E and CA

« The automation of the population of the CA tool with cost data from sources
other than Pro/E, such as Raytheon’s COTS Cost Information System (CIS),
the Raytheon/Sherpa Product Information Manager (PIM), and other estimate
repositories as appropriate

Table A-1 shows the data types Table A-1. Data Types and Repositories

addressed within the scope of the Data Type Storage Repository
planned demonstrations. Product (Design) Data PIM

This IT architecture was demon- Manufacturing Process Data | Oracle database
strated — along with Raytheon,s Existing Cost Models UNIX directories, PIM
Product Development Process and Component Costs cIs
supporting lean practices — as Design Models/Drawings Pro/E UNIX directories, PIM
applied to the development phases Rates and Factors Oracle database
of the Raytheon/ARPA High DenSity Programmatic Data Oracle database
Microwave Program (HDMP) T/R Tile | cost Estimates CA UNIX directories, PIM

and its associated antenna subarray.

A.3 General Requirements
The following summarizes requirements that were identified as necessary to support the
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JAST/JMD Program:

1. Integration of engineering design data with cost data. This included, where
necessary, creating new repositories for design or cost data to facilitate their
integration. This covered the following data types:

+ Part cost data

» Manufacturing process coefficients
» Rates and factors

* Programmatic data

» Cost estimates

2. Provision for a common, user-friendly graphical user interface that allowed
common and simplified access to the engineering design to cost tool set

The JMD application integration effort consisted of three basic components:
» Graphical user interface (GUI)
* Virtual database agent (two modules)

» Database and communication servers
These will be described in detail later in individual sections.

A.4 Data Model
The data model consisted of two major elements.

The first was the classification and description of all parts used by the JMD tile array.
This was represented by the class structure defined in the CIS Explore product. Figure
A-2 illustrates the relationships between the major classes and associative entities. For
a more detailed listing of the class structure see A.8.1, Exhibit A (CIS Explore Class
Structure) of this Appendix. This model was altered in two ways:

1. The addition of the following class properties that were attached to the internal
part number, manufacturing part number and parts lists classes and inherited
through all their subclasses. The properties were:

* Part price: cost of part

« Part price type code: type of price (estimate, quote, etc.)
 Part price type qty: quantity at which price is determined
 Part price date: date price was given

Part yield: first time yield
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Figure A-2. CIS Explore Classes and Associations

2. The addition of Raytheon specific classes and properties that were necessary to
accurately describe the tile array parts and their associated properties

The second element of the data model was the data necessary to support the
estimating process. This included the following Oracle types of data. (See A.8.2, Exhibit
B — Data Dictionary and A.8.3, Exhibit C — Oracle Data Definition Language)

1. Corporate Purchase Agreements
2. Rates and Factors

3. Programmatics

A description of the backend server Ingres database that was created by Raytheon’s
proprietary Process Characterization Tool (PCT) and the client-side table functions
required to access that data that the VDA had retrieved across the networks is detailed
in A.8.4, Exhibit D — PCT Interface Specifications.

A.5 User Interface

A.5.1 JMD GUI (JGUI)

The JGUI was a Java Windows-based application designed to provide a common
integrated user friendly interface to the tool set used by a design engineer This
application was developed using the ORBIX WEB Development Software and replaced
the PDM | (PGUI) used in the early part of the JMD program development phase.
Table A-2 details the GUI functions and associated programming methodologies.
Figure A-3 illustrates the interfaces between the JGUI and the tools it supported, and
the databases and files accessed by those tools.
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Table A-2. GUI Functions

Function Technique
PIM Access Remote shell script to start the PIM application from remote production server
CIS Access Remote shell script to start the CIS Explore 2.5.3 from remote server
Pro/E Access Remote shell script to start the Pro/Engineer application from remote server
CA Access Remote shell script to start the Cost Advantage application from remote server

Data Requests

CORBA calls to the VDA

UNIX File Editing

Shell scripts to start X-Windows application

JGUI

(86-91-%0) €61 1080-910

VDA Data Cost UNIX

Pro/E CIs Requests PIM | |Advantage|| Editor

Figure A-3. JGUI Interfaces

Figure A-4 shows the hierarchical class structure for the JGUI (CORBA)
implementation, which is operationally sequenced in the procedures outlined in A.8.9,
Exhibit | — JMD Operational Test Procedures. These procedures were developed to
help validate the transition from the old PGUI to the new JGUI CORBA software. The
transition to CORBA software affected only the interfaces between client-servers and

not the functionality of the VDA or the GUI.

A.6 Virtual Database Agent

Two VDA modules were developed. VDA Module 1 handles all requests for data to be
supplied to support the estimating process. VDA Module 2 handles all requests for
updating PIM and CIS with new cost estimates generated by the estimating tools and
the cost models used to generate the estimates. The general architecture related to the

interfaces between the components is illustrated in Figure A-5.
The interfaces to the VDA were broken down into two categories:

« JGUI to VDA
* VDA to database servers

Class Hierarchy

class java.lang.Object

class IE.lona.Orbix2.CORBA.BaseObject (implements IE.lona.Orbix2. CORBA._ObjectRef)
class JMD.PIM (implements JMD._PIMRef)
class JMD._boaimpl_PIM (implements JMD._PIMOperations)

class JMD._tie_PIM

class JMD.VDA (implements JMD._VDAREef)
class JMD._boaimpl_VDA (implements JMD._VDAOperations)

class JMD._tie_VDA

class JMD.ClientMsg (implements IE.lona.Orbix2. CORBA.IDLCloneable, |E.lona.Orbix2.CORBA.Marshalable)
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class java.awt.Component (implements java.awt.image.ImageObserver, java.awt.MenuContainer, java.io.Serializable)
class java.awt.Canvas
class JMD.MainPane1
class java.awt.Container
class java.awt.Window
class java.awt.Dialog
class JMD.utils.FileMesg
class JMD.utils.Mesg
class java.awt.Frame (implements java.awt.MenuContainer)
class JMD.EcuGUI (implements java.awt.event.ActionListener, JMD.GUIcallback)
class JMD.utils.FileFrame
class JMD.IpIGUI (implements java.awt.event.ActionListener, JMD.GUIcallback)
class JMD.LoginFrame (implements java.awt.event.ActionListener)
class JMD.MainGUI (implements JMD.LoginEventListener, java.awt.event.ActionListener)
class JMD.PartPriceGUI (implements java.awt.event.ActionListener, JMD.GUIcallback)
class JMD.ProcessCoefficientsGUI (implements java.awt.event.ActionListener, JMD.GUIcallback)
class JMD.ProgrammaticsGUI (implements java.awt.event.ActionListener, JMD.GUIcallback)
class JMD.RatesFactorsGUI (implements java.awt.event.ActionListener, JMD.GUIcallback)
class JMD.toolkit.Configuration
interface JMD.DataFilter
class java.util.EventObject (implements java.io.Serializable)
class JMD.LoginEvent
interface JMD.GUIcallback
class JMD.IPLKey (implements |IE.lona.Orbix2.CORBA.IDLCloneable, |E.lona.Orbix2.CORBA.Marshalable)
interface JMD.LoginEventListener (extends java.util.EventListener)
class JMD.LoginInfo
class JMD.MainApp
class JMD.Securitylnfo (implements IE.lona.Orbix2.CORBA.IDLCloneable, IE.lona.Orbix2. CORBA.Marshalable)
class IE.lona.Orbix2.CORBA.ServerDispatcher
class JMD._dispatcher_PIM
class JMD._dispatcher_VDA
class JMD.ServerResponse (implements IE.lona.Orbix2. CORBA.IDLCloneable, IE.lona.Orbix2.CORBA.Marshalable)
class java.lang.Thread (implements java.lang.Runnable)
class JMD.toolkit.CISObject
class JMD.toolkit. CostAdvObject
class JMD.Ecu (implements JMD.DataFilter)
class JMD.Ipl (implements JMD.DataFilter)
class JMD.toolkit.PIMObject
class JMD.PartPrice (implements JMD.DataFilter)
class JMD.toolkit.ProEObject
class JMD.ProcessCoefficients (implements JMD.DataFilter)
class JMD.Programmatics (implements JMD.DataFilter)
class JMD.RatesFactors (implements JMD.DataFilter)
class JMD.toolkit. TextEditor
class java.lang.Throwable (implements java.io.Serializable)
class java.lang.Exception
class JMD.FilterException
class JMD._PIMHolder
interface JMD._PIMOperations
interface JMD._PIMRef (extends IE.lona.Orbix2. CORBA._ObjectRef)
class JMD._VDAHolder
interface JMD._VDAOperations
interface JMD._VDAREef (extends IE.lona.Orbix2.CORBA._ObjectRef)
class |IE.lona.Orbix2.CORBA._sequence_Char (implements |E.lona.Orbix2.CORBA.IDLCloneable, |E.lona.Orbix2. CORBA.Marshalable)
class JMD.CharStream
class IE.lona.Orbix2.CORBA._sequence_Octet (implements IE.lona.Orbix2.CORBA.IDLCloneable, IE.lona.Orbix2.CORBA.Marshalable)
class JMD.OctetStream

Figure A-4. Class Structure for the JGUI (COBRA) Implementation
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Figure A-5. JGUI, VDA and Database Interfaces and Data Flow

A.6.1 Virtual Database Agent Module 1 (VDA1)
VDA1 provides the interface between

Oracl CIS PIM UNIX
i | racle | .
the JGUI and all data sources supporting Database Database Database| | Files |

810

the estimating tool. These data source UNIX UNIX UNIX UNIX |8
types are illustrated in Figure A-6. Each Server Server Server Server §
type required a different method of ' ' I ' ! 8
interface. The VDA initially used the [ VDAT |

remote procedure call (RPC) as its basic UNIX

call structure. This was subsequently I

‘encapsulated” with the CORBA IDL to [ cost Prol Il

enable an ORB implementation while |Advantage Engineerl
salvaging all of the previously developed Wolerggﬂon

software. VDA1 was designed to be

running all the time waiting for incoming  Figyre A-6. VDA1 Data Interfaces
messages. Upon receipt of a message,

one of the services in the following sections is performed.

A.6.1.1 Internal Class Structure. An Table A-3. Data Sources and Class Names
internal class will be defined for each of the Data Source Class Name
data sources to be accesses. In the case of cls
PIM two classes will be established, one

partfuncs

o ) o Oracle oraclefuncs
describing PIM as a. d.ata source for inquiries PIM (extract) oim1
and the other describing PIM as data source ,
PIM (update) pim2

for update. Table A-3 is a list of the sources
and the corresponding class describing it. Each class structure is currently a single
level. This can be expanded to include multiple levels in the future as the
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number of interfaces to a particular data source expands.

A.6.1.2 JGUI Requests for Data from VDA1. The following defines the call interfaces
between the JGUI and the VDA1 and between the VDA1 and its data sources. See
A.8.5, Exhibit E — VDA Call Format Parameter Definitions, for call parameter definitions.

Interface #1

Call Name product structure

Description call to VDA1 to be used by any request for data pertaining to product
structure

Format product_structure (IPL_key, file_path, qualifiers, security _info, return_code)

Comments IPL key is a structure containing the information necessary to uniquely
identify a specific product structure and the number of levels of the
structure. The structure contains the following fields:

Part

Revision

Version

Cage Code
Promotion Status
No. of Levels

Qualifiers indicates type of product structure processing to be done. One or more from
the following list may be requested:
proe = Pro/E model files
ca = Cost Advantage files
ipl = indentured parts list
proc = indentured process list

This is a pass through interface. All processing will be handled by the existing PIM
interface routine.
Class Name pim1

Method RPC call to the PIM RPC Server (pass through) to request PIM IPL extract.
This is a synchronized linkage where the VDA1 will wait until a response is
sent back from the PIM Server. Similarly, the linkage to the PGUI is also
synchronized.

Method pim_data (IPL_key,

format: file_path, qualifiers, security_info, return_code)
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Interface #2

Call Name part price

Description call to VDA1 to be used by any request for data pertaining to part or
component cost

Data Source(s) Oracle CPA database
CIS Explore database
Format part_price (file_path, over_write, qualifiers, security_info, return_code)

Comments The file path may specify a part price file (.PPR) or an indentured parts list
file (.IPL). If a PPR file is specified, it contains the list of parts to be priced
and the quantity of each part in one unit of the finished product. If an IPL is
specified, the VDA first creates a PPR file by analyzing the indenture levels
and quantities in the IPL and summarizing them to the level of each unique
part in the finished product

Part price optionally accepts the following qualifier to identify a specific parts
list:

organization

project
The underlying database allows the user to name and save a list of “eligible”
parts for use in a specific design. The list may include a specific price that
the user wants to incorporate for evaluation, and may also designate a
make versus buy decision. If the optional qualifier for parts list identification
is specified, the VDA will first search the parts list for a designated price. If
no price is found in the parts list, the VDA will next examine the make
versus buy indicator and look for a price in the corresponding location, i.e.,
Raytheon parts list or corporate purchase agreement (CPA), respectively. If
no price is found by this method, the VDA sill use the standard retrieval
algorithm described below.

A standard rule is used to return part prices when a parts list is not specified, or when
no price is available from the parts list. The priority order for determining the
price is:

CPA
Supplier price
Raytheon make price
Parts list price
See A.8.7, Exhibit G — Pricing Logic Pseudo-Code, for part pricing pseudo-code

Build quantity is included as part of the .ppr file and designates the number of units of
finished product to assume for part pricing. If volume agreements apply to
the part price, the program quantity will be multiplied by the part count per
unit finished product to determine the purchase volume.

Class Name partfuncs
Method Embedded CIS Explore C++ API call to extract Part Price data.
CPA interface will embed SQL code as part of the method.

SQL pseudo code : Select price where part = input_part and quantity GE qty n and LE
gty n+1.

Note: this will logic will be repeated comparing the current bucket against
the next volume bucket
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|Method Format Standard SQL and CIS APl commands

Interface #3

Call Name rates and factors

Description call to VDA1 to be used by any request for data pertaining to rates and
factors

Data Source(s) Oracle rate and factors database

Format rates_factors (file_path, over_write, qualifiers, security_info, return_code)
Comments Labor and overhead rates require the following qualifiers:

source code

date

Class Name oraclefuncs

Method Rates factors interface will embed SQL code as part of the method

SQL pseudo code: Select rate_category and rate where
source code = input_source_code and (input_date GE valid_from_date and
LE valid_through_date)

Method Format Standard SQL

Interface #4

Call Name programmatics

Description call to VDA1 to be used by any request for data pertaining to the program or
project specifically such as build quantities, build year and other misc. data.

Data Source(s) Oracle Programmatics database

Format programmatics (file_path, over_write, qualifiers, security_info, return_code)

Comments Program information requires the following qualifier:

Class Name oraclefuncs

Method Rates factors interface will embed SQL code as part of the method

SQL pseudo code Select programmatic_name_1, programmatic value 1 ... where
project = input project

Method Format Standard SQL

Interface #5

Call Name process data
Description call to VDA1 to be used by any request for data pertaining to process

Format process_coefficients (file_path, over_write, qualifiers, security_info,
return_code)

Comments Process coefficients require the following qualifiers:
process identifier
manufacturing location
Class Name oraclefuncs
Method Rates factors interface will embed SQL code as part of the method
SQL pseudo-code Select process coefficient name 1, process coefficient 1 ... where
manufacturing_location = input_manufacturing_location

Method format: Standard SQL
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Note:

» All embedded SQL will conform to Oracle object library calling sequences. The
underlying Oracle network transport will be Version 2.x TCP/IP protocol.

« All Oracle access should be via imbedded SQL.

» All SQL access to data should use the defined views not direct table access.

A.6.2 VDA2

VDAZ2 will provide the interface between the JGUI and all data sources updated with the
result of the estimating tool. Currently this will be limited to the PIM Ingres Database.

A.6.2.1.1 JGUI to VDA 2 (Pass-through to PIM Server)
Interface #6

Call Name vault product

Description call to VDA2 to be used by any request to update data resulting from an
estimating session.

Data Source PIM Ingres Database

Comments IPL key is a structure containing the information necessary to uniquely
identify a specific product structure to be updated

Class Name pim2
Method vault_product (IPL_key, file_path, qualifiers, security_info, return_code)

Method Format RPC call to the PIM RPC Server (pass through) to request product
cost update. This is a synchronized linkage where the VDA2 will wait until a
response is sent back from the PIM server. Similarly, the linkage to the
JGUI is also synchronized. Refer to the definitions and specifications for
VDAT1.

A.7 Database and Communication Servers

All interface calls will be synchronous using RPC. That is, the calling process will wait
for the remote procedure to complete execution before it continues.

A.7.1 PIM RPC Server

CSC developed software to interact between the VDA1 Server and the PIM TCP/IP
Server. This server is running all the time and waiting for incoming messages. Upon
receiving a message, the PIM TCP/IP Server will be connected to and a message will
be formatted and transmitted to the PIM Server. This linkage is synchronized until the
PIM Server has processed the request and delivered the PIM data to the requesting
UNIX machine (see PIM TCP/IP Server description).

Calling Format: pim_data (IPL_Key, file_path, qualifiers, security info, return_code)

A.7.2 PIM TCP Server
CSC developed software to interact between the PIM RPC Server and the PIM

145




Database Server. This server is running all the time and waiting for incoming messages.
Upon receiving a message, a child process will be spawned and the process owner
changed to the requesting user (the User ID embedded in the security_info). The PIM
Database will be accessed for security verification. Upon successful connection, the
PIM IPL data will be extracted via the Sherpa DMS/EDM API and results written to an
output file. At the end of the IPL extraction, the output file(s) are FTPed to the
originating UNIX machine per the file spec described in the file_path parameter. A code
and a message is then returned back to the PIM RPC Server. This linkage is also
synchronized until the all PIM data are processed.

A.8 Exhibits

A.8.1 Exhibit A — CIS Explore Class Structure

Only the first five levels through the electronics component tree are show here. For a
complete listing, refer to the class browser in the CIS Explore 2.5.3 application software.

! 5
Explore =
[ :
[ [ [ [ [ 2
1.1 1.2 1.3 1.4 1.5 1.6 ]
Process Supplier Component Commodity Design Reuse| | Organization
Management | | Management | | Management | | Management (Raytheon Data
parts)
Figure A-7. Level 1 of CIS Class Structure
1.3 g
Component g
Management =
I I =
1.3.1 1.3.2
Manufacturer Internal Part
Part Number Number
1.3.11 1.3.21
Standard Class Standard Class
Structure Structure

Figure A-8. Levels 2 and 3 of CIS Class Structure
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1.3.1.1 g
Standard =4
Class 2
Structure g
1.3.1.1.1 1.3.1.1.2 1.3.1.1.3 1.3.1.14 1.3.1.15
Electric/ Electro- Mechanical Subsystems Materials
Electronic Mechanical as Rev &
Components | | Semi-finished
1.3.1.1.6 1.3.1.1.7
Publication Accessory
Figure A-9. Level 4 of CIS Class Structure
1.3.1.1.1 8
|w]
Electrical/ 3
Electronic 2
[ 2
13.1.1.1.1 13.1.1.1.9 1I'3t.1'1.1t'1d6 e
B . | Integrate
Amplifier Sensor Circuit
131112 1.3.1.1.1.10 1.3.1.1.1.17
B Conductor Microwave B Passive
Accessory Filter
1.3.1.1.1.3 1.3.1.1.1.11 1311118
| Microwave Application | [ Transistor
Component Specific DL
[ | 1.3.1.1.1.4 1.3.1.1.112 [ ]| 1.3.1.1.1.19
Resistor Inductor Capacitor
|| 131115 1311143 ||| 1311120
Tube Oscillator . Lamp or.
Display Device
13.1.1.1.6 1.3.1.1.1.14 1.3.1.1.1.21
B | Piezoelectric
Antennae Transformer )
Device
|| 1.3.1.1.1.7 1.3.1.1.1.15 1.3.1.1.1.22
Diode Battery Trigger Device
1.3.1.1.1.8
-1 Opto-Electrical
Device

Figure A-10. Level 5 of CIS Class Structure
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A.8.2 Exhibit B — Data Dictionary

Table Name Data Element Name Key | Oracle Data Type Lgth | CIS Logical Data Type
supplier/cap local supplier id pk varchar2 6 stext6
supplier/cap local supplier name varchar2 35 stext35
cpa cpa number pk varchar2 4 stext4
cpa cpa start date date SDateTime
cpa cpa expration date date SDateTime
part/cpa supplier part number pk varchar2 26 stext26
part/cpa cpa number pk varchar2 4 stext4
part/cpa max qty 1
part/cpa unit price 1 number 10,2 VNum10_2
part/cpa max qty 2 number 7 VNum7
part/cpa unit price 2 number 10,2 VNum10_2
part/cpa max qty 3 number 7 VNum7
part/cpa unit price 3 number 10,2 VNum10_2
part/cpa max qty 4 number 7 VNum7
part/cpa unit price 4 number 10,2 VNum10_2
part/cpa max qty 5 number 7 VNum7
part/cpa unit price 5 number 10,2 VNum10_2
part/cpa max qty 6 number 7 VNum7
part/cpa unit price 6 number 10,2 VNum10_2
supplier part supplier part number pk varchar2 26 stext26
supplier part local supplier id pk varchar2 6 stext6
supplier part supplier part price number 10,2 VNum10_2
supplier part supplier part price type code varchar2 1 stext1
supplier part supplier part price type qty number 10,2 VNum10_2
supplier part supplier part price date date SDateTime
internal/supplier part local supplier id pk varchar2 6 stext6
internal/supplier part supplier part number pk varchar2 26 stext26
internal/supplier part hac part number varchar2 26 stext26
internal part hac part number pk varchar2 26 stext26
internal part hac cage code varchar2 5 stext5
internal part hac part price number 10,2 VNum10_2
internal part hac part price type code varchar2 1 stext1
internal part hac part price type gty number 10,2 VNum10_2
internal part hac part price date date SDateTime
parts lists parts list name pk varchar2 25 stext25
parts lists part number pk varchar2 26 stext26
parts lists make buy code varchar2 1 stext1
parts lists parts list price number 10,2 VNum10_2
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Table Name Data Element Name Key | Oracle Data Type Lgth | CIS Logical Data Type
parts lists parts list price type varchar2 1 stext1
parts lists parts list price gty number 10,2 VNum10_2
parts lists parts list price date date SDateTime
parts list name parts list name pk varchar2 25 stext25
parts list name parts list description varchar2 75 stext75
rates and factors source sode pk varchar2 6 stext6
rates and factors rate type code pk varchar2 1 stext1
rates and factors rate category pk varchar2 25 stext25
rates and factors valid from year pk varchar2 4 stext4
rates and factors valid from month pk varchar2 2 stext2
rates and factors valid through year pk varchar2 4 stext4
rates and factors valid through month pk varchar2 2 stext2
rates and factors rate number 12,4 VNum12_4
programmatics project name pk varchar2 15 stext15
programmatics programmatic type code pk varchar2 1 stext1
programmatics programmatic category pk varchar2 25 stext25
programmatics programmatic name 1 varchar2 25 stext25
programmatics programmatic value 1 number 12,4 VNum12_4
programmatics programmatic name 2 varchar2 25 stext25
programmatics programmatic value 2 number 12,4 VNum12_4
programmatics programmatic name 3 varchar2 25 stext25
programmatics programmatic value 3 number 12,4 VNum12_4
manufacturing process manufacturing location pk varchar2 15 stext15
manufacturing process process name pk varchar2 25 stext25
manufacturing process process description varchar2 75 stext75
manufacturing process process coefficient name 1 varchar2 15 stext15
manufacturing process process coefficient 1 number 12,4 VNum12_4
manufacturing process process coefficient name 2 varchar2 15 stext15
manufacturing process process coefficient 2 number 12,4 VNum12_4
manufacturing process process coefficient name 3 varchar2 15 stext15
manufacturing process process coefficient 3 number 12,4 VNum12_4
manufacturing process process coefficient name 4 varchar2 15 stext15
manufacturing process process coefficient 4 number 12,4 VNum12_4
manufacturing process process coefficient name 5 varchar2 15 stext15
manufacturing process process coefficient 5 number 12,4 VNum12_4
manufacturing process process coefficient name 6 varchar2 15 stext15
manufacturing process process coefficient 6 number 12,4 VNum12_4
manufacturing process process coefficient name 7 varchar2 15 stext15
manufacturing process process coefficient 7 number 12,4 VNum12_4
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Table Name Data Element Name Key | Oracle Data Type Lgth | CIS Logical Data Type
manufacturing process process coefficient name 8 varchar2 15 stext15
manufacturing process process coefficient 8 number 12,4 VNum12_4
manufacturing process process coefficient name 9 varchar2 15 stext15
manufacturing process process coefficient 9 number 12,4 VNum12_4
manufacturing process process coefficient name 10 varchar2 15 stext15
manufacturing process process coefficient 10 number 12,4 VNum12_4

A.8.3 Exhibit C — Oracle Data Definition Language
PROC_DESC VARCHAR2 (075) NULL,
PROMPT Creating JMD obl_rate components PROC_COEFF_NAME_1 CHAR (015) NULL,
CREATE TABLE JMDDEMO.OBL_RATE_TABLE PROC_COEFF_1 NUMBER  (012,04) NULL,
( PROC_COEFF_NAME_2 CHAR (015) NULL,
SOURCE_CODE CHAR (006) NOT NULL, PROC_COEFF_2 NUMBER  (012,04) NULL,
RATE_TYPE_CODE CHAR (001) NOT NULL, PROC_COEFF_NAME_3 CHAR (015) NULL,
RATE_CATEGORY CHAR (025) NOT NULL, PROC_COEFF_3 NUMBER  (012,04) NULL,
VALID_FROM_YEAR CHAR (004) NOT NULL, PROC_COEFF_NAME_4 CHAR (015) NULL,
VALID_FROM_MONTH CHAR (002) NOT NULL, PROC_COEFF_4 NUMBER  (012,04) NULL,
VALID_THROUGH_YEAR  CHAR (004) NOT NULL, PROC_COEFF_NAME_5 CHAR (015) NULL,
VALID_THROUGH_MONTH CHAR (002) NOT NULL, PROC_COEFF_5 NUMBER  (012,04) NULL,
RATE NUMBER (012,04) NOT NULL, PROC_COEFF_NAME_6 CHAR (015) NULL,
PRIMARY KEY( PROC_COEFF_6 NUMBER  (012,04) NULL,
SOURCE_CODE, PROC_COEFF_NAME_7 CHAR (015) NULL,
RATE_TYPE_CODE, PROC_COEFF_7 NUMBER  (012,04) NULL,
RATE_CATEGORY, PROC_COEFF_NAME_8 CHAR (015) NULL,
VALID_FROM_YEAR, PROC_COEFF_8 NUMBER  (012,04) NULL,
VALID_FROM_MONTH, PROC_COEFF_NAME_9 CHAR (015) NULL,
VALID_THROUGH_YEAR, PROC_COEFF_9 NUMBER  (012,04) NULL,
VALID_THROUGH_MONTH) PROC_COEFF_NAME_10CHAR (015) NULL,
) PROC_COEFF_10 NUMBER  (012,04) NULL,
PCTFREE 10 PRIMARY KEY(
STORAGE(INITIAL 5K NEXT 20K) MFG_LOCATION,
; PROC_NAME)
CREATE VIEW JMDDEMO.OBL_RATE )
AS SELECT ALL PCTFREE 10
SOURCE_CODE, STORAGE(INITIAL 5K NEXT 20K)
RATE_TYPE_CODE, :
RATE_CATEGORY, CREATE VIEW JMDDEMO.MFG_RATE
VALID_FROM_YEAR, AS SELECT ALL
VALID_FROM_MONTH, MFG_LOCATION,
VALID_THROUGH_YEAR, PROC_NAME,
VALID_THROUGH_MONTH, PROC_DESC,
RATE PROC_COEFF_NAME_1,
FROM JMDDEMO.OBL_RATE_TABLE PROC_COEFF_1,
; PROC_COEFF_NAME_2,
PROMPT Creating JMD Programmatic components PROC_COEFF_2,
CREATE TABLE JMDDEMO.PROG_TABLE PROC_COEFF_NAME_3,
( PROC_COEFF_3,
PROJECT CHAR (015) NOT NULL, PROC_COEFF_NAME_4,
PROG_TYPE_CODE CHAR (001) NOT NULL, PROC_COEFF_4,
PROG_CATEGORY CHAR (025) NOT NULL, PROC_COEFF_NAME_5,
PROG_NAME_1 VARCHAR2  (025) NULL, PROC_COEFF_5,
PROG_VALUE_1 NUMBER (012,04) NULL, PROC_COEFF_NAME_8,
PROG_NAME_2 VARCHAR2  (025) NULL, PROC_COEFF_6,
PROG_VALUE_2 NUMBER (012,04) NULL, PROC_COEFF_NAME_7,
PROG_NAME_3 VARCHAR2  (025) NULL, PROC_COEFF_7,
PROG_VALUE_3 NUMBER (012,04) NULL, PROC_COEFF_NAME_8,
PRIMARY KEY( PROC_COEFF_8,
PROJECT, PROC_COEFF_NAME_9,
PROG_TYPE_CODE, PROC_COEFF_9,
PROG_CATEGORY) PROC_COEFF_NAME_10,
) PROC_COEFF_10
PCTFREE 10 FROM JMDDEMO.MFG_RATE_TABLE
STORAGE(INITIAL 5K NEXT 20K) :
; PROMPT Creating JMD supplier components
CREATE VIEW JMDDEMO.PROG CREATE TABLE JMDDEMO.SUPPLIER_TABLE
AS SELECT ALL (
PROJECT, LOCAL_SUPP_ID CHAR (006) NOT NULL,
PROG_TYPE_CODE, LOCAL_SUPP_NAME VARCHAR2 (035) NOT NULL,
PROG_CATEGORY, PRIMARY KEY(
PROG_NAME_1, LOCAL_SUPP_ID)
PROG_VALUE_1, )
PROG_NAME_2, PCTFREE 10
PROG_VALUE_2, STORAGE(INITIAL 5K NEXT 20K)
PROG_NAME_3, :
PROG_VALUE_3 CREATE VIEW JMDDEMO.SUPPLIER
FROM JMDDEMO.PROG_TABLE AS SELECT ALL
; LOCAL_SUPP_ID,
PROMPT Creating JMD Manufacturing Rate components LOCAL_SUPP_NAME
CREATE TABLE JMDDEMO.MFG_RATE_TABLE FROM JMDDEMO.SUPPLIER_TABLE
( ;
MFG_LOCATION CHAR (015) NOT NULL, | PROMPT Creating JMD supplier cpa components
PROC_NAME CHAR (025) NOT NULL,
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CREATE TABLE JMDDEMO.CPA_TABLE

(

CPA_NUMBER CHAR (004) NOT NULL,
CPA_START_DATE DATE NULL,
CPA_EXP_DATE DATE NULL,
PRIMARY KEY(

CPA_NUMBER)

)
PCTFREE 10
STORAGE(INITIAL 5K NEXT 20K)

UNIT_PRICE_5 NUMBER  (009,04)
MAX_QTY_6 NUMBER  (008)
UNIT_PRICE_6 NUMBER  (009,04)

PRIMARY KEY(
SUPP_PART_NUMBER,
CPA_NUMBER),

CONSTRAINT CPA_PART FOREIGN KEY (
CPA_NUMBER)
REFERENCES JMDDEMO.CPA_TABLE

)
PCTFREE 10

NULL,
NULL,
NULL,

CREATE VIEW JMDDEMO.CPA
AS SELECT ALL
CPA_NUMBER,
CPA_START_DATE,

STORAGE(INITIAL 5K NEXT 20K)

CREA’TE VIEW JMDDEMO.CPA_PART
AS SELECT ALL

CPA_EXP_DATE SUPP_PART_NUMBER,

FROM JMDDEMO.CPA_TABLE CPA_NUMBER,
; MAX_QTY_1,
PROMPT Creating JMD cpa part components UNIT_PRICE_1,
CREATE TABLE JMDDEMO.CPA_PART_TABLE MAX_QTY_2,
( UNIT_PRICE_2,
SUPP_PART_NUMBER CHAR (026) NOT NULL, MAX_QTY_3,
CPA_NUMBER CHAR (004) NOT NULL, UNIT_PRICE_3,
MAX_QTY_1 NUMBER  (008) NULL, MAX_QTY_4,
UNIT_PRICE_1 NUMBER  (009,04) NULL, UNIT_PRICE_4,
MAX_QTY_2 NUMBER  (008) NULL, MAX_QTY_5,
UNIT_PRICE_2 NUMBER  (009,04) NULL, UNIT_PRICE_5,
MAX_QTY_3 NUMBER  (008) NULL, MAX_QTY_S6,
UNIT_PRICE_3 NUMBER  (009,04) NULL, UNIT_PRICE_6
MAX_QTY_4 NUMBER  (008) NULL, FROM JMDDEMO.CPA_PART_TABLE
UNIT_PRICE_4 NUMBER  (009,04) NULL, ;
MAX_QTY_5 NUMBER  (008) NULL,

A.8.4 Exhibit D — PCT Interface Specifications

A.8.4.1 Introduction/Scope. The purpose of this specification is to describe a
database construct that will serve as a communications vehicle between the back-end
servers (source) and the client-side data objects that serve as the intermediary (i.e.,
buffered by the VDA) source of data for the design-to-cost models on the client-side.
The functionality of the Process Characterization Tool (PCT) is described in detail in the
document “Process Characterization IT Integration Requirements,” dated June 1997.

The database construct is generic and supported both the integration of the Process
Characterization Tool (PCT) databases into the JMD IT architecture and future
upgrades to the Parts Database characteristics which had initially focused mainly on
price characteristics. As a result of demonstrating some of the earliest capabilities of the
JMD prototype, parts characteristics needed to address size, weight, physical
configuration, etc. It was anticipated that the model developers would require these
other parts characteristics in their models for increased model fidelity and design trade
space. Since the PCT database typifies a database with an extensive trade space for
the manufacturing processes at Raytheon, it supported this natural extension for the
update of the interface to the Parts Database characteristics.

It was intended that the implementation of this generic database construct be robust,
such that as the model requirements identified new data fields that were required as
variables in the model cost equations, the data interface/exchange via the VDA
remained unchanged. This was accomplished using a variable record format for an m x
n spreadsheet format for both the PCT and the Parts Database communication protocol
between the back-end servers and the client-side workstations.

A.8.4.2 Database Construct/Format. Figure A-11 illustrates the relationships between
the data generators and the data consumers in the IT architecture for both the PCT and
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the other application tools being used on the JMD program. Note that the VDA
middleware software is a buffer between the data generators and the data consumers.
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Figure A-11. Prototype IT Architecture

The MFG (PCT) Database shown in the lower left corner of Figure A-11 has been
expanded in Figure A-12 to show the data characteristics/format that the PCT
application must generate and store in the PCT database, and which the VDA will
port/move from the server-side object to the client-side data object. Before discussing
the PCT database construction and its utilization in detail, the Server E to Server D
Ingres connection shown in Figure A-11 will be discussed using the exploded view of
Figure A-12.

Because of the location of the Ingres Server E and the business environment
associated with the database and sources of information, a special Ingres-to-Ingres
connection was devised to provide a pathway for the data as shown in Figure A-12.
Several ‘scripts’ and a GUI were developed to integrate the PCT data source into the
JMD architecture. From outside the VDA, these scripts enable security and regular
updates to take place to Server D. This is all transparent to the VDA, and as far as the
VDA and the Clients accessing the data are concerned, Server D is Server E. The
scripts allow Server D to see a filtered and controlled portion of Server D.

Figure A-13 depicts a four-dimensional function for “load substrate for stencil,” each
dimension being represented by a pair of records called a record-couplet. There are no
limits to the number of values along each dimension, as are there no limits to the
number of dimensions or record-couplets.
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Figure A-12. The PCT Ingres-to-Ingres Connection

It can be seen from Figure A-13 that the multi-dimensional function depicted by the
PCT MxN data file comprises a set of M record-couplets, one for each dimension of the
function. Each record-couplet is a pair of records consisting of an equal number of N
fields in each record, where N is the number of data points along each dimension of the
function plus a fixed amount of header field information. Each record-couplet can be of
variable length from 4 through N. 4 is the minimum number of fields in a record-couplet
because there are three fields dedicated to identification of process and variable names
and units, and there has to be at least one field for the abscissa and ordinate data. The
record-couplet in effect represent the points along a curve for which data has been
accumulated. For points in between, there are a number of options available to derive
the intermediate values, such as linear interpolation or a “bounded” assignment to one
of the points in the variable length record. At this point in the JMD IT architecture
demonstration, the latter was chosen not just for its simplicity in implementation, but as
an interim implementation until the cost model designers had an opportunity to “push”
back some refined requirements based on some initial cost model development.
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Full Process Name X-axis variable Y-axis Variable X1 X2 X3 XN
Name Name Value Value Value Value
Process Pseudo ID Units Units Y1 Y2 Y3 YN
Value Value Value Value
Load substrate for substrate area Yield 4 5 6
stencil
364 cm? % A B o]
Load substrate for substrate area Oper_Support 4 5 6 9
stencil
365 cm? minutes 5 0 5 24
Load substrate for substrate machine CT 4 5 6
stencil thickness
366 Mils seconds 12 10 10
Load substrate for substrate Operator CT 4 5 6 10 25
stencil thickness
367 Mils seconds 20 17 15 8 2

Figure A-13. An lllustrative Example of a Variable Record PCT MxN Data File

The record-couplet in bold in A-13 has been repeated in Figure B-14 and will be
described in detail to illustrate the expandability of the PCT table to define n-
dimensional functions for a manufacturing process.

The second column in Figure A-14 describes the parameters for the x-axis depicted
by the last four cells in the first row which are shaded lightly (i.e., 4 represents the
abscissa value for 4 cm? of substrate area).

The third column in Figure A-14 describe the parameters for the y-axis depicted by
the last four cells in the second row which are shaded slightly darker (i.e. 10 represents
the ordinate value for % of MST for Eng Support for 4 cm? substrate area .

In the JMD IT Prototype Architecture, the data contents of Figure A-13 are compiled
by Raytheon’s PCT tool and stored in an Ingres database. The VDA is tasked with the
methods and the intelligence to acquire, format, and port the data from the PCT
database in the far bottom left of Figure A-11 are the client-side data-object on the far
right of Figure A-11.

Once the data becomes resident in the client-side data-object, there are specially
developed Cost Advantage functions that have been created to allow the equations of

load substrate for substrate area

stencil

Eng Support 4 5 6 9

365 cm? % of MST A B C D

Figure A-14. A Typical Record-Couplet of a PCT MxN Data File

the cost model to extract the required data for computing costs as a function of the
design features that have been modeled into the cost model. The functionality of the
Cost Advantage functions is described next.
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A.8.4.3 Preliminary Specifications for “Bounded Table Function’ for Cost
Advantage. “boundedTbl” is a table accessing function compatible with Microsoft
Excel's “.csv’ (comma separated values) format. Its purpose is to allow numeric data
stored in a tabular file to be accessed by specifying a row designator and a data
variable for which a value is required. The function can be accessed from within a Cost-
Advantage equation in the following way:

value = boundedTbl (“filename”, Process_Name, Abscissa_Value_of_interest)

Where boundedTbl is the actual name given to the function in Cost Advantage,
“filename” corresponds to the name of the file contained in client-side data object in
one of the following directories:
$CMTUSERROOT/JMD_DATA
$CMTGLOBALROOT/JMD_DATA

The boundedTbl function expects the data directory to be the same as that used for
part price, rates & factors, etc.

The Process_ name specifier is a text string containing data that must exactly
match data in the first two cells of one of the odd rows in the table. This key is used to
find an appropriate pair of rows in the table from which to access data. A comma is
used to separate the field values in the text string Process_ name. Note that this
approach is scaleable to allow a hierarchical access to manufacturing process data (i.e.,
if there is an indentured process structure to the characterization of the manufacturing
processes, it may take several comma separated fields to “find” the correct entry in the
table). To illustrate this implementation of the function in Cost Advantage and the
characterization capabilities of Raytheon’s PCT itself, the following example is given.

Example:

Assume that the data of Figure A-13 exists in a file called opCost.csv

If a Cost-Advantage model wanted to determine how much Oper_Support was
required to load a 6 cm? substrate for stenciling, the following function call would yield
the number of minutes which could then be converted into a cost using a labor rate:

Val = boundedTbl (“opCost.csv”, “Load substrate for stencil, substrate area”,
5.5)

The routine first locates rows three and four based on the input “Load substrate for
stencil, substrate area”. It then locates an appropriate return cell by comparing the
input value 5.5 against the data fields found in the first of these two rows in columns
four through seven. Because 5 < 5.5 < 6, the returned value for the function lookup is 0
(minutes) based on the lower bounding value of 5 (hence the name boundedTbl).
Instead of this arbitrary assignment to the left side of the bounding values, the function
could be recoded to use the right side, or better still it could even do a linear
interpolation of the values in the table.

Note that there is in implicit ascending order to X-axis values, and there are no
restrictions on the Y-axis values. An error is reported if an input is less than the first X-
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value in the table, or if it is greater than the last X-value given, then the last Y-axis value
is returned.

If the Process_ name specifier is not located, if there are no data fields, or if the
data file itself is not located, then the routine will return a 0 value and print an error
message on the system console.

Because the Process_ name specifier can be rather lengthy, an unique alias has
been assigned to it so that the cost model developers can keep the equations cleaner in
appearance and content. The alias must be unique and the following two function calls
are equivalent:

Val = boundedTbl (“opCost.csv”, “Load substrate for stencil, substrate area”,
5.5)

Val = boundedTbl (“opCost.csv”, “365”, 5.5)

The first one is more user-friendly in that it conveys information about the process
characterization, whereas the second one is simpler but less informative about the
process being accessed.

A.8.5 Exhibit E — VDA Call Format Parameter Definitions

file path The directory structure leading to the file to be processed, or the
directory where the set of files to be processed exists. The file path
starts at the root of the UNIX file system on the “calling” machine.
For example, the file path for the part price file might be
/Export/home/Cognition/DSS.

over-write Flag indicating whether or not the original contents of an existing
file should be replaced with the new requested information (redo
the entire request) or just “fill in the blanks.” For example, if you are
pricing a list of parts and the over-write argument is Y,” then the
entire file would be repriced. If the argument was ‘N,” then only
those parts with zeros or blanks would be repriced.

qualifiers Variable length character string containing a list of request specific
variables or arguments. For example, the qualifiers for a product-
structure call might be ‘proe,ipl’ to return the Pro/E files and an
indentured parts list.

security info Structure containing the current login identification and password of
the end user. This identification is used in subsequent data retrieval
to restrict access to authorized users only.

return code return code indicating status of request. For example, zero
indicates successful completion.
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A.8.6 Exhibit F — File Layout Definitions

All files are ASCII delimited by “ “, “.” or “/” as indicated below.
# Indicates comment to UNIX, but may be meaningful to VDA.

iPL - indentured parts list

indenture level char(2)

part number char(32)
quantity 9999999.99
unit of measure char(5)

price per unit of measure 9999999.99

.EST - estimated cost
part number char(32)
cost per unit of measure  9999999.99

Example:
PN0132577: $A

.MAT - material cost
material number char(32)
price per unit of measure 9999999.99

Example:
# 6061 Aluminum Alloy per pound

6061-T1: $11.42

.PGM - programmatics
program keyword
keyword value

Example:
TotalProductionRun: 25000

char(32)
9999999.99

.PPR - part price

part number char(32)
price per unit of measure 9999999.99
gty/unit finished product 9999999

Example:
# capacitors

C123: 23/ 10

# flip chips

A: X/ 4
B: Y/ 8
# wirebonded chips

A: X/2

B: Y/4

C: Z/2

.PRC

process identifier (comment line) char(32)

coefficient name
coefficient value
Example:

# solder wirebonded components
A1:1

# solder discrete components
A2:1

# epoxy flip chips

A3: 1

# Zevatech placement

A4:1

# Raytheon’s 3500 placement
AS5: 1

char(8)
9999.99

.RAT - rates & factors
keyword
keyword value

char(32)
9999999.99

Example:
realization_factor: 1.1

utilization_rate: 168
supervisor_rate: A
sust_engr_rate: B
assoc_prent_rate: C
sal_pc_rate: D
assoc_labor va rate: E
assoc_supt_labor_rate: F
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A.8.7 Exhibit G — Pricing Logic Pseudo-Code

Price Look-up Routine

If input project and organization name is
provided
retrieve price from parts list
# using part, project and organization
name
if part found
if price >0
use this price for part
else
If make buy indicator on parts list =
M,
look for part in CIS Internal parts
class
If part found
use price
else
return 0.0
else
if make buy indicator on parts list =
B,
look for part on CPA
if part found
if more than one price
use lowest price
else
use price
else
look for part in the CIS parts
class
if part found
use price
else
return 0.0
else
perform default lookup
else
perform default lookup
else
perform default lookup.

Default Look-up Routine

Look for price on CPA
if found
if more than one price
use lowest price
else
use price
else
look for part in the CIS mfg parts class
if found and price > 0
use price
else
look for part in the CIS internal parts
class
if found and price >0
use price
else
use 0.0.
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A.8.8 Exhibit H — Project Library Structure

PDM GUI Libraries

Source Code: /home/pd13153/JMD/pgui

Executable: /home/pd13153/JMD/bin/jmd_top_level
Config Input: /home/pd13153/JMD/bin/pgui.cfg

Log Output: /home/pd13153/JMD/bin/pgui.log

VDA Libraries

Source Code: /home/pd13153/JMD/vda

Executable: /home/pd13153/JMD/bin/vda_server
Config Input: none

Log Output: /home/pd13153/JMD/bin/vda_server.log

PIM RPC Server Libraries

Source Code: /home/pd13153/JMD/pim/rpcsvr
Executable: /home/pd13153/JMD/bin/pimrpc_server
Config Input: /home/pd13153/JMD/bin/pimrpcsvr.cfg

Log Output: /home/pd13153/JMD/bin/pimrpc_server.log

PIM TCP Server Libraries

Source Code: /home/pd13153/JMD/pim/tcpsvr
Executable: /home/pd13153/JMD/bin/pimtcp_server
Config Input: /home/pd13153/JMD/bin/pimsvr.cfg
Log Output: /home/pd13153/JMD/bin/pimsvr.log

FTP Shell Script:  /home/pd13153/JMD/bin/ftp.script
A.8.9 Exhibit | - JMD Operational Test Procedures

A.8.9.1 Purpose/Scope. These procedures step through the various man-machine
operations supported by the JMD JGUI software. The procedures were developed to
validate the operability of the software as it transitioned through the changes being
made by Raytheon and its subcontractors. The purpose of the tests is to determine
whether the software under test preserves the functionality and performance of some or

all of the software being modified or replaced.

A.8.9.2 Test Environment. These procedures assume that the hardware environment
as depicted in Appendix A, Figure A-3 has already been set up and that the following

software modules and databases are active:
A. Software
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JMD client software, JMD VDA server software, Network and Solaris Operating
systems
B. Hardware

RSPIM_C2 (Sparc) server, RSPIM_C3 (Sparc) server, Client (Sparc) workstation
C. Test Data

Small demonstration test databases for each of the VDA functions

A.8.9.3 Features Tested

A.8.9.3.1 Virtual Database Agent (VDA) Servers. A separate test to verify that the
two VDA modules perform the connections between the JGUI and the backend
database servers as required was not required. Instead, the tests outlined in A.8.9.3.3,
“The JAVA Graphical User Interface (JGUI),” were used to test the complete
functionality of the two VDA modules in conjunction with the JGUI test procedures.

A.8.9.3.2 RPC & TCPI/IP Servers. A separate test to verify that the RPC and TCP/IP
Servers perform the connections to the backend database servers was not required.
Instead, the tests outlined under, “The JAVA Graphical User Interface (JGUI)” were
used to test these connections in conjunction with the JGUI test procedures.

A.8.9.3.3 The Java Graphical User Interface (JGUI)
Login screen
Test Description:

This test verifies that the login screen is properly displayed on the client machine and
that the login provides the required security for allowing users to access the JMD
system. At this point in the JMD IT architecture development, only a limited number of
user ids were utilized to provide access to the entire JMD software. For the purposes of
this test description, the pseudo-name ‘orbjmd’ has been utilized as the ‘id’ in the
descriptions for the man/machine interface and dialogues.

Starting conditions:

- An up and running client-machine with the JMD client software installed and a
“Command Tool window” window active to accept commands.

Test Procedure:

- change directory to /home/orbjmd/cwJMD

- Verify that the makefile ‘Makefile. HACdamio’ exists

- Start up the login screen by typing the following command:

make -f Makefile.HACdamio run_client <Enter>

Expected Results:

- The JGUI login screen displayed on the terminal is as shown in Figure A-15.
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JMD : Login

Welcome to the Design To Cost System (DTC).

(86-91-%0) €611080-G20

User N
ser Name OK

Password |l Ty

Figure A-15. JGUI's Login Screen

A.8.9.3.4 Access to JGUI’s Main Screen
Test Description:

This test verifies that the main JGUI screen is displayed properly on the client machine
after the correct entry user name and password.

Test Procedure:
- Perform the Login test (if not already done)
- Enter correct user name for the field “User Name” on the login screen.

- Enter correct password for the field “Password” on the login screen, then click on the
“OK” button.

Expected Results:

- The main JGUI’s screen should be displayed and should look like the one in Figure A-
16.

==

(86-91-10) £611080-920 _|

JMD ::Design To Cost

File Tools Data |

cis | PIM CA | Pro/E|

Figure A-16. JGUI's Main Screen
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A.8.9.3.5 File Feature
Test Description:

The test verifies that the text editor can be invoked through the JGUI.
Test Procedure:

- Select the selection “Open Text Editor” from the pulldown menu of the “File”
from the main screen as shown in Figure A-17.

Expected Results:
- The Solaris text editor will be displayed on the terminal.
Figure A-17. File Feature

A.8.9.3.6 Exit

JGUI

Test Description:
This test verifies that user can exit out of the JGUI.
Test Procedure:

- Select the selection “Exit DTC” from the pulldown menu of the “File” from the main
screen as shown in Figure A-17.

Expected Results:

- All of the JGUI's active windows will disappear from the terminal and
windows that were active prior to initiating the JGUI will remain.

“. JMD :: Design To Cost

File Tools Data

Open Text Editori

Exit DTC PIM I

CA Pro/E |

(86-G1-¥0) €611080-220

Figure A-17. JGUI's Login Screen

A.8.9.3.7 CIS (Components Information System)
Test Description:
This test verifies that the CIS application can be invoked from the JGUI.
Test Procedure:

- Double click on the button labeled “CIS” from the main JGUI, or select the selection
“CIS” m the pulldown menu under “Tool.”

Expected Results:
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- The CIS application window will be displayed on the terminal at which point the User’s
Manual and CIS operating procedures apply.

A.8.9.3.8 PIM (Product Information Management)

Test Description:

This test verifies that the PIM application can be invoked from the JGUI.
Test Procedure:

- Double click on the button labeled “PIM” from the main JGUI, or select the selection
“PIM” from the pulldown menu under “Tool.”

Expected Results:

- The PIM application window will be displayed on the terminal at which point the User’s
Manual and PIM operating procedures apply.

A.8.9.3.9 CA (Cost Advantage System)

Test Description:

This test verifies that the CA application can be invoked from the JGUI.
Test Procedure:

- Double click on the button labeled “CA” from the main JGUI, or select the selection
“CA” from the pulldown menu under “Tool.”

Expected Results:

- The CA application window will be displayed on the terminal at which point the User’s
Manual and CA operating procedures apply.
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Figure A-18. CIS Application Window
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SIS
Signoffs

Attach

Reports

SIRSANARRASE
Utilities Help

Number
1084580

5127560
5127561
5127562
5127563
5127564
5127566
5127570
5127571
5127572
5127573
5127580
9127581
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Select and process record.

250R15U103KP4
250R18U104KP4

Rev Ver Status

0001
0001
0001
0001
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CREATED
CREATED
CREATED
CREATED
CREATED
CREATED
CREATED
CREATED
CREATED
CREATED
CREATED
CREATED
CREATED
CREATED
CREATED

Title

MMIC
CAPACITOR,CHIP
CAPACITOR, CHIP
ASSEMBLY,FRAM
ASSEMBLY,FRAM
ASSEMBLY,FRAM

PIN

ENVELOPE
ASSEMBLY HOUSING
ASSEMBLY TILE
ASSEMBLY,SUBSTRA
ASSEMBLY SEAL
SUBSTRATE
ASSEMBLY TILE
ASSEMBLY SUBARRAY

Figure A-19.

PIM Application Window
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1

Assembly Costs
Assembly of SubAssy A 1
Assembly of Housing 1

Assembly of SubAssy B 1

Assembly of NewRFAssy 1
SubAssy A 1
Housing 1
SubAssy B 1

NewRFAssy

Assembly Costs
Assy of Sub A

Assy of Sub B

Assembly Costs

Assy of LowerFrame 1

Assy of Align Mech 2

Assy of Connector 10
LowerFrame 1
Align Mech 2
Connector 10
Total

Figure A-20. CA Application Window
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A.8.9.3.10 Pro/E (Engineering CAD Tool)

Test Description:

This test verifies that the Pro/E can be invoked from the JGUI.
Test Procedure:

- Double click on the button labeled “Pro/E” from the main JGUI, or select the selection
“Pro/E” from the pulldown menu under “Tool.”

Expected Results:

- The Pro/E application will be displayed on the terminal at which point the User’s
Manual and Pro/E operating procedures apply.

A.8.9.3.11 Programmatics
Test Description:

This test verifies that the backend Programmatics database is accessed and that the
data is properly archived in the client-side data object.

Test Procedure:

- Select the selection “Programmatics ” from the pulldown menu of the “Data”
from the main screen. See Figures A-22 and A-23.

- Enter correct information for the Project and Output Location fields.
Expected Results:

- The Programmatics data is accessed and stored in the file specified in the Output
Location field and is also automatically presented to the User via the Text Editor as part
of the above button sequences. After viewing the data presented by the Text Editor,
“OK” returns control back to the main JGUI screen of Figure A-16.

A.8.9.3.12 Rates and Factors

Test Description:

The test is to verify that the Rates and Factors feature will work correctly.

Test Procedure:

- Select the selection “Rates and Factors ” from the pulldown menu of the “Data”
from the main screen. See Figure A-24.

- Enter correct information for the Source Code and Output Location fields.
Expected Results:

- The data will be stored and can be viewed from the file that is specified in the Output
Location field.
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Figure A-21. Pro/E Application Window
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File Tools

CIS

JMD :: Design To Cost

Data 1

Programmatics

Rates and Factors

Process Coefficients
Part Cost Retrieval

Pro/E I

(86-91-%0) €611080-820 ]

Figure A-22. Pulldown Menu Under “Data”

(=] E3

OK|

% PROGRAMMATICS
Project :PROJECTS
Output 1
Location /home/pdcausers

Clear |

]

_Cancel |

(86-91-%0) €61 1080-620

Figure A-23. Programmatics Option Under “Data”

+% RATES AND FACTORS

Source Code | -

207640

(=] E3

Output
Location

OK|

=

Whome/pdcausers

Clear |

]

_Cancel |

(86-91-%0) €61.1080-0€0 ]

Figure A-24. Rates and Factors Option Under “Data”
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A.8.9.3.13 Process Coefficients

Test Description:

The test is to verify that the Process Coefficients feature will work correctly.

Test Procedure:

- Select the selection “Process Coefficients” from the pulldown menu of the “Data”
from the main screen. See Figure A-25.

- Enter correct information for the Manufacturer Location, Process and Output Location
fields.

Expected Results:

- The data will be stored and can be viewed from the file that is specified in the Output
Location field.

. PROCESS COEFFICIENTS M=l E3

]
Manufacturer | ;-\ | ocATION |

(86-91-%0) €61.1.080-1€0 ]

Location

Process ' PROG NAME |

Outpgt Yhome/pdcausers

Location |

OK | Clear | Cancel |

Figure A-25. Process Coefficients Option Under “Data”

A.8.9.3.14 Update

Test Description:

The test is to verify that the Estimate Cost Update feature will work correctly.
Test Procedure:

- Select the selection “Estimate Cost Update” from the pulldown menu of the “Data”
from the main screen. See Figure A-26.

- Enter correct information for the Item/Part, Revision, Version, Cage Code, Promotion
Status, Part Cost fields.

Expected Results:
- The new cost will be updated inside the PIM database for the candidated part.
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ESTIMATED COST UPDATE

(86-91-¥0) €611080-2€0

ltem/Part .
Revision 1000
Version L
Cage Code 182577
Promotion 'E'CREATED
Status "
Part Cost ﬁ 0.00
Update Clear Cancel I

Figure A-26. Estimated Cost Update Option Under “Data”

A.8.9.3.15 Part Cost Retrieval

Test Description:

The test is to verify that the Part Cost Retrieval feature will work correctly.
Test Procedure:

- Select the selection “Part Cost Retrieval” from the pulldown menu of the “Data” from
the main screen. See Figure A-27.

- Enter correct information for the Option, Organization, Part List Name, Input Location,
and Output Location fields.

Expected Results:

- The data will be stored and can be viewed from the file that is specified in the Output
Location field.
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PART COST RETRIEVAL g
Option: E
I +  Re-price all Re-price $0 value only E
Organization :'_"RCS
P
Parts List Name JMD
Input Location ‘#¥home/pdcausers/parts.ppr >
; =
Output Location +home/pdcausers |
OK | Clear | Cancel I

Figure A-27. Part Cost Retrieval Option Under “Data”

A.8.9.3.16 Indentured Part List

Test Description:

The test is to verify that the Indentured Part List feature will work correctly.
Test Procedure:

- Select the selection “Indentured Part List” from the pulldown menu of the “Data” from
the main screen. See Figure A-28.

- Enter correct information for the IPL, PROCESS, Pro-E, CA, ltem/part, Revision,
Version, Cage Code, Promotion Status, Explosion Depth Level, and Output Filename
fields.

Expected Results:

- The data will be stored and can be viewed from the file that is specified in the Output
Location field.

172



* PRODUCT STRUCTURE

4 |PL ltem/Part .5127600

(86-91-10) €61 1080-7€0

4 PROCESS

Revision 0ool
4+ PRO-E

Version I
4 CA

Cage Code -82577

Promotion | CREATED

Status

Explosion

Depth Level |*

Output - :

Filename shome/pdcausers -
OK | Clear | Cancel|

Figure A-28. Indentured Part List Option Under “Data”

A.8.9.3.17 Log Files. The following log files exist for tracking the run-time activities of
the client and server processes:
/home/JMD/bin directory:

sqlnet.log
pimrpcsvr.log
pimsvr.log
pim_pimapi.log

vda_server.log

A.8.9.3.18 Configuration Files. The following configuration files exist:
/home/JMD/bin
vda.config

pimrpcsvr.cfg
pimsvr.cfg
jmd.cfg

A.8.9.3.19 Starting SQL*NET. SQL*NET V2 is installed on rspim_c3. To start the
SQL*NET, do the followings:

1. Log in to rspim_c3 server with
login: oracle
password: oracle7
2. Source /home/JMD/bin/set_orbix_env by doing the followings:
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ksh
. set_orbix_env

(This should set the correct oracle env variables)

3.

4.

Start the listener process:

Isnrctl start

Check if the listener process is running by:

ps -ef | grep LIS

The following should be seen:
/oracle/7.2.3/orahome/bin/tnsisnr LISTENER -inherit

A.8.9.4 Performance Checklist. The following table contains a list of the man-machine
functions for the JMD software. All required features in this table must have a check-
mark in the Verified column to signify that the behavior was demonstrated through the
procedures in Table A-4.

Table A-4. JMD Man-Machine Interactions

#

Man-Machine Operation

Verified

The startup script start_pim at /home/JMD/bin works properly and the following servers run on
rspim_c2:

-pimrpc_server
-pimrpc_server2

-pimtcp_server

The startup script start_vda at /home/JMD/bin works properly and the following servers run on
rspim_c3:

-vda_server

-vdatwo_server

The client software (JGUI) can be launched and operational on client machine by:
cd /home/orbjmd/cwJMD
make -f Makefile. HACdamio run_client

Login screen and logic work properly.

vda_server module works properly.

Table A-4. JMD Man-Machine Interactions (Continued)

#

Man-Machine Operation

Verified

vdatwo_server module works properly.

pimrpc_server module works properly.

[oo2N BNl )]

pimrpc_server2 module works properly.

pimtcp_server module works properly.

The orbix is launched and operational.

11

The SQL*NET can be started and operational.

12

Selection “Open Text Editor Tool” from the File pull down menu of the JMD GUI works
properly.

13

Selection “Exit DTC” from the File pull down menu of the JMD GUI works properly.
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14 Selection “Components Information System” from the Tools pull down menu of the JMD GUI
works properly.

15 Selection “Product Information Management” from the Tools pull down menu of the JMD GUI
works properly.

16 Selection “Cost Advantage System” from the Tools pull down menu of the JMD GUI works
properly.

17 Selection “Pro/E” from the Tools pull down menu of the JMD GUI works properly.

18 Push button labeled “CIS” works properly.

19 Push button labeled “PIM” works properly.

20 Push button labeled “CA” works properly.

21 Push button labeled “Pro/E” works properly.

22 Selection “Programmatics” from the Data pull down menu of the JMD GUI works properly.

23 Selection “Rates and Factors” from the Data pull down menu of the JMD GUI works properly.

24 Selection “Process Coefficient” from the Data pull down menu of the JMD GUI works properly.

25 Selection “Part Cost Retrieval” from the Data pull down menu of the JMD GUI works properly.

26 Selection “Estimates Cost Update” from the Data pull down menu of the JMD GUI works
properly.

27 jmdSrv server process is installed and operational by:

cd /home/JMD/bin

ksh

. set_orbix_env

catit jmdSrv (to see if the jmdSrv exists)
rmit jmdSrv (remove existing one)

putit jmdSrv /home/JMD/bin/jmdSrv
chmodit jmdSrv i+all (give permission to ini)

chmodit jmdSrv I+all (give permission to launch)

175




APPENDIX B — ACRONYMS, GLOSSARY AND REFERENCES

Acronyms

A&TS analysis and trade studies

ABC activity-based costing

ABM activity-based management

API application programming interface

ARPA Advanced Research Project Agency

ASR alternative systems review

ASU Arizona State University

BA Boeing Aerospace

BOM bill of materials

CA Cost Advantage

CAD computer-aided design

CAIV cost as an independent variable

CBU cost build-up

CDR critical design review

CDRL Contract Data Requirements List

CER cost estimating relationship

CIS Cost Information System

CM configuration manager or configuration
management

CORBA Common Object Request Broker Architecture

COTS commercial off-the-shelf

CPA Corporate Purchase Agreement

CSsC Computer Sciences Corporation

DFMA design for manufacturing assembly

DPP detail parts and processes

DPU defects per unit

DSS Decision Support System

DTC design to cost

DTLCC design to life cycle cost
DTUPC design to unit production cost

E&MD engineering and manufacturing development
EDM electrode discharge machining

EDU engineering development unit

ESQL embedded structured query language
FCA functional configuration audit

FTP file transfer protocol

GM General Motors Corporation

GMHE General Motors Hughes Electronics
GUI graphical user interface

HDMP High Density Microwave Packaging
HEM HE Microwave
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IDL interface definition language

Ingres interactive graphic retrieval system

IP Internet protocol

IPL indentured parts list

IPPD integrated product and process development
IPPL indentured parts and processes list

IPR internal process review

IPT integrated product team

IT information technology

JGUI JMD Graphical User Interface

JMD JSF Manufacturing Demonstration

JSF Joint Strike Fighter

KCC key control characteristic

KPC key product characteristic

LA Lean Aerospace Initiative

LRIP low rate initial production

MG Mentor Graphics Corporation

MMIC monolithic microwave integrated circuit
MST Management Support Technology Corporation
NC numerically controlled

NDI non-development item

NRE non-recurring engineering

0&S operation and support

ODBC open database connectivity

ORB object request broker

PC personal computer

PCA physical configuration audit

PCT process characterization tool/toolset
PDM product data management

PDP product development process

PDR preliminary design review

PGUI PDM Graphical User Interface

PIM Product Information Manager

Pro/E Pro/Engineer

PTC Parametric Technology Corporation
RDBMS relational database management system
RDT&E research, development, test and evaluation
ROI return on investment

ROM rough order of magnitude

RPC remote procedure call

RSC Raytheon Systems Company

SAVE Simulation Assessment Validation Environments
SFR system functional review

SPC statistical process control

SQL structured query language
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SRR system requirements review

SSRB Source Selection Review Board

STEP STandard for the Exchange of Product model
data

SVR system verification review

T/R transmit/receive

TCP transmission control protocol

UPC unit production cost

VDA virtual database agent

WSC weapons systems contractor
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Glossary
ABM

CA

Costlink-PE

DC

DFMA

DPP

EDM

HDMP

IPL

JMD

Activity-Based Management. A technique for measuring costs
that differs from that traditionally used, where the overhead of an
organization may by used to maintain a capability that cannot be
justified by the limited use of that capability. In ABM, all major
activities within an major operation are identified and the costs of
performing each activity are collected and paid for by each entity
using the organization resource. Thus, the cost/benefits of
maintaining a capability can be easily determined.

Cost Advantage. The trademark software developed by Cognition
Corporation that provides expert-level design guidance and
performs predictive cost analysis.

Costlink-PE. This is a registered trademark of Cognition
Corporation. It provides the integration link between Pro/E and
Cost Advantage.

Direct Current. In the context used in this report, DC refers to the
control current used to adjust the power and gain of the RF
circuitry.

Design for Manufacturing and Assembly. A method for analyzing
the suitability of a design for manufacture. The analysis is
normally completed when a focused group of manufacturing and
assembly engineers review the design from those viewpoints.

Detailed Parts and Processes. A listing of the parts and
processes used when completing an assembly. In addition to the
IPL, the DPP would cover parts cost, labor, time, and six-sigma
reliability figures.

Electrode Discharge Machining. A machining method in which
metal removal is accomplished using an electrode discharge
technique.

High Density Microwave Packaging. A Raytheon radar array
developmental program involving the use of high density
multilayer ceramic packaging.

Indentured Parts List. A list of the parts used to complete an
assembly, with the individual parts listed as to when they are
used during the assembly process. For example, the parts
constituting the level 4 assembly would be listed at level 5, etc.

JSF Manufacturing Demonstration. The name given by the
customer to this study of cost analyses in support of the Joint
Strike Fighter program.
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LTCC

PCT

Pro/E

PWB

RF

T/R

TD6

Low Temperature Cofired Ceramic. An alumina-based ceramic
that is fired at low temperature (~800°C); as contrasted to high
temperature cofired ceramic, which is fired at a temperature
several hundred degrees higher.

Process Characterization Tool Set. An integrated set of software
tools that facilities the capture and analysis of information
detailing manufacturing processes that may initially be contained
in detailed process instructions, industrial engineering standards,
realization factors, design guidelines, interviews memos, and cost
accounts, etc. The output of this tool set, which has been tailored
for the JMD program, is to put the details of these various
processing steps in tabular form such that they can be readily
accessed when using Cognition table linking commands. The
PCT contains the information that can be accessed and used to
provide the rationale to explain the appropriate CA formulas.

Pro/Engineer. This is a registered trademark of Parametric
Technology Corporation, and refers to the computer-aided design
capability of that organization.

Printed Wiring Board. A single- or multilayer organic board
structure containing copper conductor traces.

Radio Frequency. In the context used in this report, RF refers to
high frequency radar array design considerations.

Transmit/Receive. The modules of a radar antenna can provide a
transmit signal and electronically separate the signal reflection for
analysis.

ToolDesign6. The machining model developed by Cognition Co.
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	Figure 6-10.  Object Schematic




	Providing Different Interfaces to the Same Data. Because encapsulation restricted data access to the use of methods, it was possible to group methods into coherent sets that presented the same data in different formats. This grouping of data was called a
	
	
	
	Figure 6-11.  Object with Interfaces




	6.3.4.2	Desired VDA/CORBA Functionality
	Administrative Methods and Intelligent Agents. If a VDA were simply to provide a coherent but passive interface to an application, it would not be much more powerful than a well-defined standard Application Programming Interface (API). However, the VDA c
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	Figure 6-12.  Prototype IT Architecture




	VDA Module 1 – Cost and Parts Data to Estimating Tools. Figure 6-12 illustrates the multiple database connections established by VDA Module 1. VDA Module 1 operates on a “pull” model. The client-side applications request the needed data through VDA Modul
	VDA Module 2 – Estimate Result to Rollup Tool and PIM. Figure 6-12 shows a very simplistic VDA Module 2, mainly to illustrate that the VDA itself is modularly expandable to meet the specific needs and uniqueness of such legacy systems as Raytheon’s PIM (
	6.3.4.5€€Mini-VDA Demo. The following describes the VDA mini-demo completed in August 1996. The mini-demo illustrated the feasibility and use of the VDA architecture as a robust solution for the integration of applications and databases for the Design-to
	VDA Module 1. The scope of VDA Module 1 was limited to accessing the backend server databases for the data required by the pilot program (HDMP T/R module design/development) cost models and the Active Array Radar Antenna assembly, which uses the T/R modu
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	Figure 6-13.  VDA Module 1 Outputs to CA for the NC Milling Process Inputs (Data for Display Purposes Only)




	VDA Module 2. The scope of VDA Module 2 for the mini-demo was to archive the cost estimates generated for the various part numbers associated with the pilot programs, which were generated from the cost modeling exercises on the CA application on the clie
	6.3.4.6€€Planned Full VDA Demo.€€The example below illustrates a typical use of the tool and data integration as had been planned for the JMD full demonstration. The scenario is the design of a mechanical part for the tile array module. The two primary t
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	A.6.1.1€€Internal Class Structure. An internal class will be defined for each of the data sources to be accesses. In the case of PIM two classes will be established, one describing PIM as a data source for inquiries and the other describing PIM as data s
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	A.8.4.3€€Preliminary Specifications for “Bounded Table Function’ for Cost Advantage. “boundedTbl” is a table accessing function compatible with Microsoft Excel’s ‘.csv’ (comma separated values) format. Its purpose is to allow numeric data stored in a tab
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	Figure A-25.  Process Coefficients Option Under “Data”
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	Figure A-26.  Estimated Cost Update Option Under “Data”
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	Figure A-28.  Indentured Part List Option Under “Data”
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